

Solving Ratio Games: Algorithms and
Experimental Evaluation

Bram van der Sanden, Marc Geilen, Michel Reniers, and Twan Basten

ES Reports
ISSN 1574-9517

ESR-2018-03
15 October 2018

Eindhoven University of Technology
Department of Electrical Engineering
Electronic Systems

© 2018 Technische Universiteit Eindhoven, Electronic Systems.

All rights reserved.

http://www.es.ele.tue.nl/esreports

esreports@es.ele.tue.nl

Eindhoven University of Technology

Department of Electrical Engineering

Electronic Systems

PO Box 513

NL-5600 MB Eindhoven

The Netherlands

1

Solving Ratio Games: Algorithms and Experimental
Evaluation

Bram van der Sanden∗, Marc Geilen∗, Michel Reniers∗, Twan Basten∗§
∗Eindhoven University of Technology, Eindhoven, The Netherlands

§TNO-ESI, Eindhoven, The Netherlands
Email: b.v.d.sanden@tue.nl, m.c.w.geilen@tue.nl, m.a.reniers@tue.nl, a.a.basten@tue.nl

Abstract
Ratio games have a range of applications in the analysis, synthesis, and verification of discrete-event systems. Since

the size of these systems is often very large, there is a need for efficient algorithms to solve ratio games. The current
state-of-the-art method to solve ratio games is by a reduction to (multiple) mean-payoff games. We introduce a direct
solution to solve ratio games by adapting existing algorithms for mean-payoff games to ratio games. Exact algorithms
are implemented for natural-number valued graphs. Numerical floating point algorithms are implemented for real-valued
graphs. We compare the runtime performance of the algorithms on an extensive test set. Policy iteration turns out to
be the most efficient solution in practice. It scales best to large game graphs, despite its theoretical complexity.

I. Introduction
A ratio game [1] is a two-player infinite game, played on a finite double-weighted directed graph, where each edge e

has two associated non-negative weights w1(e) and w2(e). In each turn of the game, two players, Player 0 and Player 1,
move a pebble on some vertex in the game over some edge to an adjacent vertex. Player 0 wants to maximize the ratio
of the sums of the weights w1 and w2 in the limit of the infinite path, whereas Player 1 wants to minimize this ratio.
Ratio games are a generalization of mean-payoff games [2], where the value of a game is given by the average per move
of a single edge weight. If all edge weights w2(e) have value 1, then the ratio game reduces to a mean-payoff game.

Ratio games can be used to synthesize controllers for discrete-event systems, where cost and productivity vary for
different events. Consider for example a manufacturing system that takes unprocessed products, executes a number of
operations, and outputs finished products. We want to synthesize a controller that in the long run achieves the highest
possible ratio of finished products with respect to the total processing time. This controller chooses the best possible
action at each system state. To find the highest ratio that can be achieved, we have to look at periodic executions
of the system, found in the cycles of the game graph. In partially-controllable systems, the environment may disturb
this periodic execution, in which case the controller has to respond. The environment might for instance influence the
duration of operations or the time when products enter the machine. In this setting a system controller is one player,
and the environment is its adversary. A controller strategy is needed that maximizes the cycle ratio, given worst-case
environmental influences. Synthesis of this controller corresponds to finding an optimal strategy in the ratio game.

Another application of ratio games is the synthesis of controllers for robust reactive systems [1]. These controllers are
not only correct with respect to the given specification, but also robust in case of violations of the assumptions made in
the specification. If assumptions are violated temporarily, the system must recover to normal operation with as few
errors as possible. Robustness is expressed as the ratio of the system error (violation of safety assumptions) to the
environment error (violation of assumptions). An optimal controller in a ratio game minimizes this ratio.

The current state-of-the-art method to solve ratio games is the algorithm by Bloem et al. [1], [7]. This algorithm
finds an optimal strategy by reduction to a series of mean-payoff games, that are solved using the algorithms from
Zwick-Paterson [3] (Fig. 1 ZP conversion). This approach is however very inefficient for larger graphs. Recently, more
efficient algorithms have been introduced to solve mean-payoff games [4], [5], [6]. In this paper, we introduce two new
algorithms to solve ratio games, by adapting algorithms for mean-payoff games to ratio games (highlighted in green in
Fig. 1). The first algorithm is a reduction from ratio games to energy games (Fig. 1 EG conversion), adapted from [6],
using the Value-Iteration algorithm [6]. This algorithm has a lower worst-case complexity bound than the ZP conversion
algorithm. The second algorithm is an adapted version of the policy-iteration algorithm (Fig. 1 Policy Iteration) for
mean-payoff games described by Chaloupka [4], [5]. The policy-iteration algorithm has a higher worst-case complexity
than the ZP conversion algorithm, but it directly solves ratio games and turns out to be much faster on most practical
cases.

In real-world applications, execution times and costs are often not natural numbers, but rather real numbers. Therefore,
we adapt all algorithms for ratio games also for real numbers, implemented with floating point representations. This
extension is also a novel contribution with respect to solving mean-payoff games, where typically only natural numbers
are considered. The algorithms using real numbers fit more naturally to the problem domain, but yield an approximate
solution, due to the rounding errors in floating point arithmetic. We derive an upper bound on the difference between

2

Energy Games

Mean-Payoff Games

Ratio Games

ZP conversion [1] Policy Iteration EG conversion

Zwick-Paterson [3] Policy Iteration [4], [5] EG conversion [6]

Value-Iteration [6]

uses

uses
generalizationgeneralization

uses

Fig. 1. Games and conversions used for solving ratio games. ZP conversion is an existing algorithm, extended for real-valued weights, and
Policy Iteration and EG conversion shown in green are new algorithms, both for natural-valued and real-valued weights.

the computed ratio values and the optimal ratio values. In contrast, the algorithms for natural numbers provide an
exact answer. All the developed algorithms are evaluated on an extensive test set, which includes synthetic game graphs
and game graphs that relate to throughput optimization in manufacturing systems.

In the remainder, we first introduce game graphs, strategies, and ratio games. Then, we describe the algorithms
to solve ratio games and give complexity bounds. The algorithms are compared by experimental evaluation. The
experiments show that the policy-iteration algorithm has the best average performance. The same observations were
made in the related field of parity games. These games can also be solved by policy-iteration algorithms, which perform
better than value-iteration algorithms in practice [8], [9]. Despite having better complexity bounds, value-iteration
algorithms often display the worst-case complexity on practical examples [8]. The appendix contains the proofs of the
complexity bounds and pseudo code of all algorithms that are evaluated.1

II. Preliminaries
We define game graphs and strategies adhering to the notation of [6], [1], [7].

Weighted graphs: A weighted graph G is a tuple (V,E, w1, . . . , wn), consisting of a finite set V of vertices, a set
E ⊆ V × V of edges, and weight functions wi : E →W, where W can be N,Z, or R depending on the type of game,
assigning weights to edges. The codomains of the weight functions will be clear from the context. We assume that
weighted graphs are total, which means that for all v ∈ V , there exists a v′ ∈ V such that (v, v′) ∈ E.

A finite path p in G is a sequence of at least two vertices v0v1 . . . vn such that (vi, vi+1) ∈ E for all 0 ≤ i < n, provided
n ≥ 1. A cycle in G is a finite path p = v0v1 . . . vn such that v0 = vn. A cycle v0v1 . . . vn is reachable from v in G, if
there exists a path u0u1 . . . um in G such that u0 = v and um = v0. A path v0v1 . . . vn in G is acyclic, if vi 6= vj for
all 0 ≤ i < j ≤ n. The weight of a path v0v1 . . . vn with respect to weight function wi is given by

∑n−1
j=0 wi(vj , vj+1).

A cycle in G is nonnegative, if its weight is at least 0. The maximal weight W in a weighted graph is defined by
W = max{wi(e) | e ∈ E, i ∈ {1, 2}}.

Game graphs: A game graph Γ is a tuple (V,E,w1,. . . , wn, 〈V0, V1〉), where GΓ = (V,E,w1, . . . , wn) is a weighted
graph and 〈V0, V1〉 is a partitioning of V into the set V0 of Player-0, and the set V1 of Player-1 vertices. An infinite
game is played by two players who move a pebble along the edges of the graph G for infinitely many rounds. In each
round, if the pebble is on some vertex v ∈ Vi, it is moved by player i along an edge (v, v′) ∈ E to a new vertex
v′ ∈ Vj , where it is player j’s turn, which may be the same player or the opponent. Let V ∗ (resp. V ω) denote the
set of finite (resp. infinite) sequences over V . A play π = v0v1 . . . ∈ V ω is an infinite sequence of vertices such that
(vi, vi+1) ∈ E for all i ≥ 0. A strategy for player i, is a function σ : V ∗Vi → V , such that for all finite paths v0v1 . . . vn
with v0 . . . vn−1 ∈ V ∗ and vn ∈ Vi, we have (vn, σ(v0v1 . . . vn)) ∈ E. We denote by Σi the set of strategies for player i.
A strategy σ for player i is memoryless if σ(pv) = σ(p′v) for all sequences p and p′ and vertex v. We denote by ΣMi the
set of memoryless strategies of player i. A play v0v1 . . . is consistent with strategy σ for player i, if vj+1 = σ(v0v1 . . . vj)
for all j ≥ 0, where vj ∈ Vi. Given an initial vertex v ∈ V , the outcome of two strategies σ0 ∈ Σ0 and σ1 ∈ Σ1 in
v is the (unique) play outcome(v, σ0, σ1), that starts in v and is consistent with both σ0 and σ1. Given memoryless
strategy σi ∈ ΣM

i for player i, we denote by GΓ
σi = (V,Eσi , w1 . . . wn) the weighted graph obtained by removing all

1On acceptance of the paper, the models and code will become available online.

3

edges (v, v′) ∈ E, such that v ∈ Vi and v′ 6= σi(v). Given memoryless strategies σ0 ∈ ΣM0 and σ1 ∈ ΣM1 , we denote by
GΓ
σ0∪σ1

= (V,Eσ0∪σ1 , w1 . . . wn) the weighted graph obtained by removing all edges (v, v′) ∈ E such that v ∈ Vi and
v′ 6= σi(v).

III. Ratio Games
We now introduce ratio games, where two players try to optimize the ratio value of the play. Player 0 wants to

maximize the ratio value, and Player 1 wants to minimize the ratio value.

Definition 1 (Ratio Game [1]). A ratio game (RG) is an infinite game played on a game graph Γ = (V,E, w1, w2,
〈V0, V1〉), with w1, w2 : E → R≥0. The ratio of a play π = v0v1 . . . ∈ V ω is the long-run average ratio of the sums of
weights w1 and w2, defined as follows

Ratio(π) = lim
m→∞

lim inf
l→∞

∑l
i=m w1(vi, vi+1)

1 +
∑l
i=m w2(vi, vi+1)

.

The value secured by strategy σ0 ∈ Σ0 in a vertex v is

Val(v, σ0) = inf
σ1∈Σ1

Ratio(outcome(v, σ0, σ1)),

and the optimal value of a vertex v in Γ is

Val(v) = sup
σ0∈Σ0

inf
σ1∈Σ1

Ratio(outcome(v, σ0, σ1)).

Strategy σ0 is optimal if Val(v) = Val(v, σ0) for all v ∈ V . The secured and optimal value are defined analogously for
strategies of Player 1.

The outer-most limit in the definition of Ratio(π) ensures that only the average behavior in the limit of the infinite
path π is relevant. The infimum limit is needed because the sequence of quotients for l→∞ can diverge for some plays.
To avoid division by zero, 1 is added to the denominator of the ratio function. This does not influence the value Ratio(π)
if
∑∞
i=0 w2(vi, vi+1) is infinite. Note that a path corresponding to an infinite play always exists, since we assume the

game graph to be total.

Theorem 2 (Optimal memoryless strategies [1]). Ratio games have optimal memoryless strategies. Let Γ = (V,E,w1, w2, 〈V0, V1〉)
be a RG. For all vertices v ∈ V , we have

Val(v) = sup
σ0∈Σ0

inf
σ1∈Σ1

Ratio(outcome(v, σ0, σ1)) = inf
σ0∈Σ0

sup
σ1∈Σ1

Ratio(outcome(v, σ0, σ1)),

and there exist memoryless strategies σ0 ∈ ΣM0 and σ1 ∈ ΣM1 such that

Val(v) = Val(v, σ0) = Val(v, σ1).

This means that ratio games are memoryless determined, i.e., memoryless strategies are sufficient for optimality,
and the optimal (maximal) value that Player 0 can achieve is equal to the optimal (minimal) value that Player 1 can
achieve. Uniform optimal strategies exist for both players, which means that a unique memoryless strategy can be used
to achieve the optimal values, independent of the starting vertex. Fig. 2 shows an example of a ratio game.

Problems in Ratio Games: In this paper we consider the following two problems for a ratio game (V,E,w1, w2, 〈V0, V1〉):
1) Value Problem. For each vertex v ∈ V , compute the optimal value Val(v).
2) Optimal Strategy Synthesis Problem. Given any vertex v ∈ V , construct an optimal uniform strategy from v for

both players.
The value problem can be used to find a ratio guarantee, by inspecting the achievable ratio in each system state.

This can be used to give a throughput guarantee. The optimal strategy synthesis can be used to find a controller that
achieves the best possible ratio, for instance to guarantee throughput-optimality under external influences. We also
define the decision problem, which is used in some approach as an ingredient to solve the value problem:

3) Value Decision Problem. Given threshold q ∈ Q, for each vertex v ∈ V , decide if Val(v) ≥ q.
In the next sections, we describe algorithms to solve the problems defined. Complexities of these algorithms are given

in Table I. Proofs for the complexity values can be found in Appendix A.

IV. Reduction to mean-payoff games
The current state-of-the art method to solve ratio games is a reduction to multiple mean-payoff games [1] (Fig. 1, ZP

conversion), and uses the Zwick-Paterson algorithm [3] to solve the mean-payoff games. The reduction is given only for
natural-valued weights. We extend the reduction to work also for real-valued weights. The method consists of three
ingredients; solving the value decision problem, solving the value problem, and solving the optimal strategy synthesis
problem.

4

v0 v1

v2 v3

1, 1

2, 3
3, 1

3, 31, 1
3, 1

2, 3

1, 3

σ0(v0) = v1, Val(v0) = 5
6

σ1(v1) = v3, Val(v1) = 5
6

σ1(v2) = v0, Val(v2) = 5
6

σ0(v3) = v1, Val(v3) = 5
6

Fig. 2. Ratio game with v0, v3 ∈ V0 and v1, v2 ∈ V1. Each edge is annotated with the weights w1 and w2. The positional optimal strategies
of Players 0 and 1 are depicted with solid red an blue edges respectively. Edges that are not used by the strategy are dashed.

W Value Strategy

ZP N O(|V |3 ·W 2 ·|E|·log(|V |·W)) O(|V |4 ·W 2 ·log(|E||V |)·|E|·log(|V |·W))
R≥0 O(|V |2 ·W 2 ·|E|·ρ−1) O(|V |3 ·W 2 ·log(|E||V |)·|E|·ρ

−1)

EG N O((log(|V |) + log(W))·|V |2 ·W 2 ·|E|) O((log(|V |) + log(W) + log(ρ))·|V |2 ·W 2 ·|E|)
R≥0 O((log(|V |) + log(W) + log(ρ))·|V |2 ·W 2 ·|E|)O((log(|V |) + log(W) + log(ρ))·|V |2 ·W 2 ·|E|)

PI N O(|V |10 ·|E|·W 3) O(|V |9 ·|E|·W 3 ·ρ−2)
R≥0 O(|V |10 ·|E|·W 3) O(|V |9 ·|E|·W 3 ·ρ−2)

TABLE I
Complexities of the algorithms described. “Value” stands for the value problem, and “Strategy” for the optimal strategy

synthesis problem. Derivations of the complexities are given in Appendix A. For real-weighted graphs (W = R≥0), a
parameter ρ is used that denotes the smallest difference when comparing ratios.

a) Value Decision Problem: An important ingredient in this approach is a decision procedure on vertex values
in ratio games. Given a positive ratio a

b ∈ Q≥0 and a vertex v ∈ V , this procedure compares Val(v) to a
b . First, we

create a mean-payoff game ΓMPG = (V,E,w, 〈V0, V1〉) with payoff function w(e) = b · w1(e)− a · w2(e) ∈ Z from ratio
game Γ = (V,E,w1, w2, 〈V0, V1〉). Let Val(v) be the value in ratio game Γ, and ValMPG(v) be the value in ΓMPG (for a
definition, see [6]). Now Val(v) ≥ a

b iff ValMPG(v) ≥ 0.
The crucial observation here is the following equivalence. Given a positive ratio a

b , we can compare this ratio to the
cycle ratio of some cycle c = v0 . . . vn with n > 0, and rewrite it to a decision on a mean-payoff value:

Σn−1
i=0 w1(vi, vi+1)

Σn−1
i=0 w2(vi, vi+1)

≥ a

b

⇔ bΣn−1
i=0 w1(vi, vi+1)− aΣn−1

i=0 w2(vi, vi+1)
bΣn−1

i=0 w2(vi, vi+1)
≥ 0

⇔ Σn−1
i=0 (b · w1(vi, vi+1)− a · w2(vi, vi+1))

n
≥ 0.

b) Value Problem: Given this decision procedure, we can compute the optimal value of each vertex. We compute
Val(v) for each vertex v ∈ V by a binary search on the set of possible outcomes. For natural-valued weights, we get an
exact answer, and for real-valued weights, we can obtain an approximation within some desired bound ρ of the actual
value.

c) Optimal Strategy Synthesis Problem: The optimal strategy synthesis problem can be solved using the group
testing technique [3], and the procedure that computes the optimal value of each vertex. For each vertex, the algorithm
iteratively eliminates half of the outgoing edges and recomputes the value of the vertex. If the value stays the same, the
optimal strategy does not need to use any of the removed edges. Else, one of the edges in the removed edges is an
optimal edge. Either way, we can restrict the attention to half of the outgoing edges. This procedure is repeated until
an edge corresponding to an optimal strategy is found.

V. Reduction to energy games
There are more efficient algorithms to find optimal strategies in mean-payoff games, than the group testing technique

described in Section IV. Among the algorithms with the lowest complexity bounds there is a reduction to energy games
(Fig. 1, EG conversion and Value-Iteration). We generalize this algorithm for ratio games (Fig. 1, EG conversion),
and also introduce the reduction for real-valued weights next to natural-valued weights. The algorithm solves both
the value problem and the optimal strategy synthesis problem at the same time, which improves the performance

5

significantly compared to the method in Section IV. This algorithm has a lower worst-case complexity bound than the
policy iteration algorithm, but is slower on average.

Before describing the algorithm, we first introduce energy games, which are used to solve the decision problem.
Similar to ratio games and mean-payoff games, energy games also have optimal memoryless strategies [10].

Definition 3 (Energy game). An energy game (EG) is an infinite game played on a game graph Γ = (V,E,w, 〈V0, V1〉),
with w : E → R, where the goal of Player 0 is to construct an infinite play v0v1 . . . ∈ V ω such that for some initial credit
c ∈ R:

c+
j∑
i=0

w(vi, vi+1) ≥ 0 for all j ≥ 0. (1)

Given an initial credit c, play π = v0v1 . . . is winning for Player 0 if it satisfies Equation (1); otherwise it is winning
for Player 1. A vertex v ∈ V is winning for Player i, if there exists an initial credit c and a winning strategy for Player i
from v for credit c. Player 0 essentially needs to ensure that all cycles that can be formed by Player 1 have nonnegative
weight.

Energy games can be solved efficiently by finding an energy progress measure [6]. An energy progress measure is a
function f : V → R such that for all (v, u) ∈ E: f(v) ≥ f(u)− w(v, u). Value f(v) is a sufficient credit to ensure that
all reachable cycles from a given vertex in a graph are nonnegative. A special value > is used to denote when the value
f(v) for some v becomes larger than the absolute sum of all negative-weighted edges. If f(v) 6= > on vertex v, then
Player 0 has a winning strategy from v, provided an initial credit f(v).

a) Decision Problem: The Value-Iteration algorithm [6] can be used to find an energy progress measure, thereby
solving the energy game. Although the description assumes weights in Z, the algorithm can be adapted for weights in
R. This algorithm is used as an ingredient to solve mean-payoff games in [6]. The algorithm performs a binary search
on the set of possible outcomes of the game to find the value Val(v) for each vertex v in the graph. This is done in
terms of multiple resolutions to the decision problem, to compare the value of a vertex with a given threshold.

Consider a threshold value ν ∈ Z, and assume n > 0. Then, we can use the following observation to convert the
decision problem for mean-payoff games to the decision problem for energy games [6]; given v ∈ V , decide if v is winning
for Player 0. The crux here is the following equivalence, assuming n > 0:

Σn−1
i=0 w1(vi, vi+1)

n
≥ ν ⇔ Σn−1

i=0 (w1(vi, vi+1)− ν) ≥ 0.

We generalize this approach to ratio games, using a similar equivalence. Given a ratio a
b , we can compare this ratio

to the cycle ratio of some cycle v0, . . . , vn with n > 0, and rewrite it to a decision on an energy game value:

Σn−1
i=0 w1(vi, vi+1)

Σn−1
i=0 w2(vi, vi+1)

≥ a

b
⇔ Σn−1

i=0 (b · w1(vi, vi+1)− a · w2(vi, vi+1)) ≥ 0.

Solving the energy game gives an energy progress measure f . For any v ∈ V , if f(v) 6= >, Player 0 has a winning
strategy from v in the energy game, and it follows that Val(v) ≥ a

b in the ratio game.
b) Value and Optimal Strategy Synthesis Problem: The optimal strategy synthesis problem for ratio games with

natural-valued weights is solved by adapting Algorithm 2 in [6]. The adapted algorithm is given in Algorithm 3 in
Appendix D.

This algorithm performs a binary search on the set of possible outcomes S = {ab | 0 ≤ a ≤|V |·W, 0 < b ≤|V |·W}∪{∞},
to find the value of each vertex v ∈ V . Given an interval [l, r], it first determines m = (l + r)/2, and considers the two
intervals [l,m] and [m, r]. Since m may not be a value in S, we instead consider intervals [l, a1] and [a2, r], where a1, a2 ∈ S.
Value a1 ∈ S is the largest value in S satisfying a1 ≤ m, and a2 ∈ S is the smallest value in S satisfying a2 ≥ m. Then,
we perform four reductions to decisions on energy games, to determine partition (V<a1 , V≥a1 , V≤a2 , V>a2). This partition
classifies the vertices by their payoff values for Player 0. For instance, set V≥a1 contains all vertices from which Player 0
secures a payoff at least a1 in the game. In case v ∈ V≥a1 ∩ V≤a2 , we know that Val(v) = a1 = a2. The optimal strategy
for vi ∈ Vi is given by σi(vi) = vj , where vj is any outgoing successor vertex consistent with the progress measure. In
the recursive steps, we consider the smaller subgraphs G<a1 = (V<a1 , E � V<a1) and G>a2 = (V>a2 , E � V>a2), where
E � U = E ∩ (U × U), the restriction of E to U .

When w1, w2 ∈ R, we perform a binary search in S using a parameter ρ that specifies the smallest difference when
comparing ratios. At each step, we split a given interval [l, r) into two intervals [l,m) and [m, r), with m = (l + r)/2.
Given m, we perform a reduction to a decision on an energy game, to find vertex partition (V<m, V≥m) on all vertices
in V , where v ∈ V<m if Val(v) < m, and v ∈ V≥m if Val(v) ≥ m. Then, we only consider the subgraphs G<m and G≥m.
If the width of interval [l, r) is smaller than ρ, we can set the value Val(v) = (l+ r)/2 for each vertex v in the subgraph,
and determine an optimal strategy.

6

v0 v1

v2 v3

1, 1

2, 3
3, 1

3, 31, 1
3, 1

2, 3

1, 3

(0,2) (1,2)

(-1,2) (3,2)

(a) Initial strategies.

v0 v1

v2 v3

1, 1

2, 3
3, 1

3, 31, 1
3, 1

2, 3

1, 3

(1, 5
6) (0, 5

6)

(10, 5
6) (-3, 5

6)

(b) Player 1 updates strategy:
σ1(v1)← v3 and σ1(v2)← v3.

v0 v1

v2 v3

1, 1

2, 3
3, 1

3, 31, 1
3, 1

2, 3

1, 3

(1, 5
6) (0, 5

6)

(2, 5
6) (-3, 5

6)

(c) Player 0 updates strategy:
σ0(v2)← v0.

Fig. 3. Illustration of the policy-iteration algorithm. Each node is annotated with distance d and ratio r using (d, r). Fig. 3c shows the
optimal strategies.

VI. Policy iteration
Dhingra and Gaubert [11] introduce a policy-iteration algorithm to compute optimal strategies for both players in

mean-payoff games. The algorithm iteratively improves the strategies of both players, until both strategies become
optimal. An improved algorithm is given by Chaloupka [5] for natural-valued weights, which we adapt to solve ratio
games. We also extend the algorithm to work with real-valued weights.

For natural-valued weights, given vertex v, we define the ratio value r(v) = r(v)N/r(v)D, where the greatest common
divisor of integers r(v)N and r(v)D is 1, to refer to the numerator r(v)N and denominator r(v)D of the ratio value r(v).
For real-valued weights, we define r(v)D = 1, and use only the nominator to store the ratio.

The policy-iteration algorithm for ratio games starts with arbitrary memoryless strategies σ0 ∈ ΣM0 and σ1 ∈ ΣM1 for
players 0 and 1 respectively. Given current strategy σ0, Player 1 finds an optimal strategy σ′1 to be played against σ0,
using multiple strategy improvement iterations if needed. Then, Player 0 can make a single iteration to improve its
strategy to σ′0, after which it is the turn of Player 1 again. The convergence proof of the algorithm requires Player 1 to
compute its optimal answer, which makes the policy-iteration algorithm asymmetric [12], [11].

a) Evaluation and Value Propagation: In each iteration, the strategy is first evaluated and then improved. Given
current strategies σ0 and σ1, we obtain graph Gσ0∪σ1 , where each vertex has one outgoing edge, chosen by the strategies.
Each vertex in this graph has a unique path to a unique cycle. In each such cycle, one vertex is picked as a selected
vertex.

Evaluation produces two vectors of size |V |; distance vector d and ratio vector r, where d ∈ NN and r ∈ QV for
natural-valued weights, and d ∈ RV and r ∈ RV for real-valued weights. Given vertex v ∈ V , r(v) is the cycle ratio of
the unique cycle reached from v in Gσ0∪σ1 , and d(v) is the distance of v to the cycle. This distance is computed as the
weight of the unique simple path from v to a selected vertex on the cycle, where each edge has a weight according
to the following weight function w′: w′(v, u) = r(u)D · w1(v, u)− r(u)N · w2(v, u). Recall that for real-valued weights
r(u)D = 1, and r(u)N is used to store the ratio value. The distance vector is used to select between alternatives with
identical ratios. After computing d and r, the strategy is improved, which is described next.

b) Strategy Improvement Player 0: Player 0 improves strategy σ0, so that for each vertex v ∈ V , the unique cycle
reachable from v in Gσ0∪σ1 has the maximum ratio among all cycles reachable from v in Gσ1 . Moreover, among cycles
with identical cycle ratios, the one with the shortest distance to the cycle is selected. To improve the strategy, given a
vertex v ∈ V0, each edge (v, u) ∈ E is checked to see whether it satisfies the strategy improvement condition of Player 0:

r(v) < r(u) ∨ (r(v) = r(u) ∧ d(v) < d(u) + w′(v, u)).

If yes, then σ0(v) is set to u. If multiple edges satisfy the condition, one with the highest r(u)-value is selected, that
improves the strategy the most. Then, the values of r and d are updated and Player 1 may improve her strategy.

c) Strategy Improvement Player 1: Given vertex v ∈ V1, each edge (v, u) ∈ E is checked to see whether it satisfies
the strategy improvement condition of Player 1:

r(v) > r(u) ∨ (r(v) = r(u) ∧ d(v) > d(u) + w′(v, u)).

The strategy improvement technique of Player 1 is similar to the improvement technique of Player 0, but is repeated
until there is no more improvement in the given round. If strategy σ1 is improved, the algorithm lets Player 0 improve
his strategy σ0 again for one iteration. This process is repeated until both players cannot update their strategies. In
that case strategies σ0 and σ1 are optimal, and r(v) = Val(v) for each v ∈ V . An illustration of the policy-iteration
algorithm is given in Fig. 3.

7

v0

v1

v2

p1
δ1 = ρ ·

∑
e∈p1

w2(e)

p2
δ2 = ρ ·

∑
e∈p2

w2 (e)

ratio r1

ratio r2

∣
r1 − r2

∣
≤ ρ

Fig. 4. The ρ relative error in the precision of the ratio values leads to a distance approximation error of δ1 for path p1 and δ2 for path p2.
The distances are therefore compared using a total relative error margin of 2 ·max(δ1, δ2).

Implementation: The pseudo code of the policy-iteration algorithm is given in Algorithm 5. Some care needs to
be taken in the implementation for real-valued weights, to ensure convergence and termination of the policy-iteration
algorithm. In the implementation of this algorithm, ratio values are stored as floating-point numbers. The precision of
these values is determined by machine precision µ, which gives an upper bound on the relative error due to rounding
in floating point arithmetic. We use a parameter ρ > µ, that specifies the upper bound on the relative error when
comparing ratios. If the ratios are within this bound, we consider them equal.

In the distance calculation, we assume that the ratio is accurate up to a relative error bound of ρ. In the w′

computation, this floating-point ratio is multiplied with the w2 weights of the edges on the path. Since r(v)D = 1 for
the real-valued weights, this multiplication is the only source of errors in the w′ computation. We introduce a variable
δ that keeps track of the error in the distance approximation, illustrated in Fig. 4. When comparing the distance values
of two paths p1 and p2, we take into account the error margin of both distance values, δ1 and δ2, and compare distances
considering them equal when the difference does not exceed 2 ·max(δ1, δ2).

Each iteration of the algorithm guarantees that we improve the strategy of both players. Upon termination of the
algorithm, we know that the approximation is stable, and the difference between the computed ratio values and the
optimal ratio values is bounded by ε = 2ρ ·|V | ·max(w2)/mcm(w2) + ρ ·|V |, where max(w2) is the maximal w2 weight
in the graph, and mcm(w2) is the minimum w2 cycle mean in the graph. In practice, first a check needs to be done to
ensure that mcm(w2) > 0.

Theorem 4. If a player does not update its strategy (i.e., the improvement condition does not apply to any vertex) then
the strategy is ε-optimal against the standing strategy of the opponent, where ε = 2ρ ·|V | ·max(w2)/mcm(w2) + ρ ·|V |,
where max(w2) is the maximal w2 weight in the graph, and mcm(w2) = min{(1/p) ·

∑p
i=1 w2(ei) | c = (e1, . . . , ep) is a

cycle in the graph}, is the minimum w2 cycle mean in the graph.

Proof. We need to prove that if the current strategy of the player is not ε-optimal, then there is some vertex for which
the improvement condition holds.

Assume that the strategy is not ε-optimal. Assume w.l.o.g. that the player is maximizing the cycle ratio (Player 0).
Then there is a vertex u, such that the current strategy leads to a cycle with ratio r, while there is a reachable cycle,
say c, with a ratio r′ such that r′ − r > ε.

Assume (towards a contradiction) that the improvement condition does not hold in any vertex of the player. Then
along any path in GΓ

σ1
(the game graph containing for the adversary only the edges corresponding to the standing

adversary strategy), the ratios r(v) are ρ-non-increasing (values cannot increase by more than ρ) (otherwise the
improvement condition would hold for the source vertex of such an edge). In particular, this implies that on any cycle
in GΓ

σ1
, all ratios of adjacent vertices are ρ-equal. For any vertex v reachable from the original vertex u, we know that

r(v) ≤ r + ρ ·|V | < r′ − ε+ ρ ·|V |. In particular we know that this holds for all vertices on cycle c. (Note that given the
definition of epsilon, this is strictly smaller than r′.)

Now consider all edges on the cycle c, going backward, and starting from some vertex v(0), in which the standing
strategy decides to deviate from cycle c (clearly there must be such a node, otherwise the ratio r(v) would be equal to
r′ and r(v) < r′). We will use v(k) to denote vertex number k in this cycle, counting backward, r(k) the current ratio of
vertex v(k), d(k) the current distance of vertex v(k) and wi(k+ 1, k) the weight i of the edge from v(k+ 1) to v(k). We
denote by δk the error margin used to compare the distance value of v(k), given the path towards the selected node in
the current strategy. Since the maximum length of such a path is |V | − 1, we can bound δk by δk ≤ δ = ρ ·|V | ·max(w2).

If the edge we follow along the cycle is compliant with the current strategy, then d(k + 1) = d(k) + w′(k + 1, k) =
d(k) +w1(k+ 1, k)− r(k)w2(k+ 1, k). If the edge is not in the strategy, then, since the improvement condition does not
hold: d(k + 1) ≥ d(k) + w1(k + 1, k)− r(k)w2(k + 1, k)− 2δ.

Following along the cycle c, assumed to be of length n, we reach the conclusion that

d(n− 1) ≥ d(0) +
n−2∑
k=0

w1(k + 1, k)−
n−2∑
k=0

r(k) · w2(k + 1, k)− (n− 1) · 2δ.

8

Note that the sums range from k = 0 to k = n− 2, i.e., the whole cycle except for the last edge from v(0) to v(n− 1).
We can now check the improvement condition on the edge from v(0) to v(n− 1). The improvement condition holds only
if:

d(0) < d(n− 1) + w1(0, n− 1)− r(n− 1)w2(0, n− 1)− 2δ.

Hence, only if,

d(n− 1) > d(0)− w1(0, n− 1) + r(n− 1)w2(0, n− 1) + 2δ.

We know that the real cycle ratio of c is r′ > r(k) + ε− ρ ·|V | for all k. Therefore:∑
e∈c w1(e)∑
e∈c w2(e) > r(k) + ε− ρ ·|V | for all k, and∑
e∈c

w1(e) >
∑
e∈c

(r(src(e)) + ε− ρ ·|V |) · w2(e),

where src(e) is the source vertex of edge e. Thus:

d(n− 1) ≥ d(0) +
n−2∑
k=0

w1(k + 1, k)−
n−2∑
k=0

r(k) · w2(k + 1, k)− (n− 1) · 2δ

= d(0) +

∑
e∈c

w1(e)− w1(0, n− 1)


−

∑
e∈c

r(src(e)) · w2(e)− r(n− 1) · w2(0, n− 1)

− (n− 1) · 2δ

> d(0) +

∑
e∈c

(r(src(e)) + ε− ρ|V |) · w2(e)− w1(0, n− 1)


−

∑
e∈c

r(src(e)) · w2(e)− r(n− 1) · w2(0, n− 1)

− (n− 1) · 2δ

= d(0)− w1(0, n− 1) + r(n− 1) · w2(0, n− 1)
+ (ε− ρ ·|V |) ·

∑
e∈c

w2(e)− (n− 1) · 2δ.

In order to arrive at the required contradiction, we also need to show that (ε− ρ ·|V |) ·
∑
e∈c w2(e)− (n− 1) · 2δ ≥ 2δ.

Here, we use that
∑
e∈c w2(e) ≥ n ·mcm(w2).

(ε− ρ ·|V |) ·
∑
e∈c

w2(e)− (n− 1) · 2δ ≥ 2δ

(ε− ρ ·|V |) ·
∑
e∈c

w2(e) ≥ n · 2δ

ε− ρ ·|V | ≥ n · 2ρ ·|V | ·max(w2)/
∑
e∈c

w2(e)

ε ≥ 2ρ ·|V | ·max(w2)/mcm(w2) + ρ ·|V | ,

which follows from the definition of ε. So the improvement condition must hold for node v(0). This is the required
contradiction. We conclude that if the improvement condition does not hold anywhere, then the strategy is ε-optimal.

VII. Experimental Evaluation
We evaluate the runtime performance of the three algorithms on various types of graphs. All algorithms are implemented

in Java, as closely as possible to the original formulation. The game graphs are stored and manipulated (for example
for constructing subgraphs) using the freely available JGraphT graph library [13].

A. Experimental setup
To run the experiments, we used a computer with Linux with a 2.70GHz Intel i5-4310M CPU processor, and we

allocated 4GB of heap space to Java.

9

LR

IN OUTCOND DRILL

UR

Fig. 5. Twilight system: manufacturing system example with two robots and two production stages.

B. Graph Classes
To test various classes of graphs, we used two synthetic graph generators and a set of application graphs. The same

synthetic graph generators are also used by Chaloupka [5] to assess the performance of algorithms solving mean-payoff
games.

a) Synthetic graphs: To generate synthetic sparse graphs, we use the graph generator SPRAND [14]. Given the
number V of vertices and the edge ratio m > 1, SPRAND generates a random graph of V vertices and at most V ·m
edges, where V − 1 edges make up a Hamiltonian cycle. Each edge e on the Hamiltonian cycle satisfies w1(e) = 1 and
w2(e) = 1 and the other edges have weights w1 and w2 picked uniformly at random from the interval given by [1,W],
given a maximal weight W . To test the algorithms, we use graphs with m = 4, denoted as SPRAND-4, which are also
used in [5]. The vertices are randomly distributed among the two players.

To generate more structured, dense graphs, we use the graph generator TOR [15]. This family consists of 2-dimensional
grids with wrap-arounds, where each vertex is connected by an edge to its top neighbor and an edge to its right neighbor.
Weights are chosen uniformly at random given a range [1,W].

We vary the number of vertices between 0 and 100 to check the performance on small graphs, where the weights are
chosen in the interval [1, 10], so W = 10. We also test larger graphs up to 50, 000 vertices with weights from [1, 50]
to investigate the scalability. For each test configuration, we generate 25 random graph instances. The results show
the average execution time of the algorithms over these 25 runs. The test set contains both natural-weighted graphs,
and real-weighted graphs. The natural-weighted graphs can be solved by all algorithms, but the implementation using
floating-point numbers yields an approximate answer. To compare the results of the numerical floating-point algorithms
with the exact algorithms, we use ρ = 1/(|V |2). This ρ is the smallest possible difference between two values of different
vertices.

b) Application graphs: To test realistic application graphs, we created a number of variants of the Twilight
system [16] model. The Twilight manufacturing system (Fig. 5) processes balls according to a given recipe. First, a ball
is loaded from the input buffer (IN) by the load robot (LR). Then, the ball is put on the conditioner (COND), to heat
the ball to a desired temperature. Once heated, the ball is transported to the drill (DRILL) by either the load robot or
unload robot (UR) to drill a hole in the ball. After drilling, the unload robot picks up the finished product and brings
it to the output buffer (OUT).

The Twilight system is modeled using the formal modeling approach described in [16]. The model describes all
resources that are part of the system and the corresponding low-level actions they provide. High-level system operations
are modeled as activities. In the Twilight system, there are activities that model the transportation of a ball, and
activities that model the processing steps. Requirements are formalized that express constraints on the ordering of
activities. These requirements ensure that products follow the recipe, and that the robots do not collide. From this
specification, a finite-state machine is constructed that captures all allowed activity orderings. By adding the timing
information, a timed state space is generated.

An optimal controller for this system maximizes throughput in terms of processed products over the total executing
time. To find such a controller, we transform the timed state space to a ratio game graph. Each activity is modeled as
a dispatch and a set of outcomes. The controller player chooses the activity that is dispatched to the machine, and
the environment player decides the outcome. Each activity has a reward value of 1 if it outputs a finished product,
and 0 otherwise. It also has a delay value that indicates the added execution time. Finding an optimal controller now
corresponds to finding an optimal strategy in the created ratio game.

In Tw-1, we take the Twilight system with the possibility that the unload robot needs maintenance after at most ten
activities. The controller can choose the most beneficial moment to execute this maintenance. In Tw-2, the drill activity
needs recalibration after at most ten activities. Again, the exact moment can be chosen. In Tw-3, the transport of
a product within the system has to be assigned to a fixed robot. In Tw-4, we take Tw-3, but extend it also with an
option that the robot is left unassigned.

10

Name Graph complexity Runtime (in sec)
|V | |E| W PI-N EG-N,ZP-N

Tw-1 53,021 84,305 70 2.89 >3600
Tw-2 45,334 73,260 100 1.73 >3600
Tw-3 121,445 183,124 70 4.56 >3600
Tw-4 980,567 1,515,469 70 48.85 >3600

TABLE II
Experimental results for the Twilight graphs.

C. Results
In the description of the experimental results, we abbreviate the policy-iteration algorithm as PI, the reduction

to energy games as EG, and the Zwick-Paterson algorithm as ZP. We use N and R to indicate the algorithm for
natural-valued weights and real-valued weights respectively. Fig. 6 shows the results for natural-weighted synthetic
graphs. Note that we can interpret natural-valued graphs also as real-valued graphs. Figs. 6a and 6c show that ZP is
the least scalable on all input games. Although the complexity bound of PI is worse than the bound of EG, in practice,
PI is much faster. It scales up to 50,000 vertices with a running time of a few minutes, shown in Figs. 6b and 6d.

We also performed experiments on real-valued graphs, with ρ = 10−5. Here we found that ZP-R and EG-R are on
average slower than their counterparts ZP-N and EG-N, which can be seen in Fig. 7a and Fig. 7b. This is because
of the ρ-approximation, that causes a much deeper recursion depth. When working with natural numbers, we know
exactly when to stop, since the minimal distance between two values is known.

PI does not use recursion to find ratio values within ρ, but rather updates the strategies of both players till these
strategies become optimal. For small ρ-values, PI-R will make the same choices as PI-N when comparing ratios. This
leads to a similar runtime for different small ρ-values, shown in Fig. 6b. Therefore an ρ-value close to the machine
precision can be chosen, with no additional penalty on the running time of PI, to obtain a more accurate approximation.

Table II shows the results for the Twilight examples, resembling realistic graphs. EG and ZP were unable to deal
with these graphs within an hour. PI can find optimal strategies in all application graphs.

VIII. Conclusion
We have introduced two new algorithms to find optimal strategies for ratio games. The energy-game conversion

algorithm uses a reduction to energy games, and the policy-iteration algorithm directly operates on the ratio game.
The current state-of-the-art uses a reduction to mean-payoff games and the group testing technique to find an optimal
strategy.

All algorithms for ratio games we present in this paper can be used on both natural numbers and real numbers.
For natural numbers, the algorithms can find an exact solution, but they are not always a realistic abstraction of the
problem domain. Therefore, we also designed algorithms that can deal with real numbers, which fits more closely to
domains where execution times and costs are typically real numbers. This extension is also a new contribution to solve
mean-payoff games with real-valued weights. We carried out an experimental study to evaluate the algorithms on both
synthetic graphs and application graphs that relate to throughput optimization in manufacturing systems. In all cases,
the policy-iteration algorithm turned out to be the fastest solver, outperforming the other two algorithms by several
orders of magnitude.

Appendix
In this appendix, we derive the complexity bounds of the three algorithms presented in this paper. First, we introduce

some general results about ratio games that are used in the complexity analysis of the algorithms.

A. Preliminaries
The maximal weight W of a ratio game is defined by W = max{wi(e) | e ∈ E, i ∈ {1, 2}}. This weight plays a role

in the set of possible ratio values, and in the complexity bounds of the algorithms. For the algorithms operating on
real-valued graphs, we introduce a parameter ρ, that determines the upper bound on the relative error when comparing
ratios.

The following results describe the possible values for any play. They follow directly from the memoryless determinacy
of ratio games, as provided by Theorem 2.

Proposition 5. Let Γ = (V,E,w1, w2, 〈V0, V1〉) be a RG. For all vertices v ∈ V , and for all memoryless strategies
σ0 ∈ ΣM0 for Player 0, the value Val(v, σ0) secured by σ0 in v is at least a

b with 0 ≤ a ≤|V | ·W and 0 < b ≤|V | ·W , if
and only if all cycles reachable from v in the weighted graph GΓ(σ0) have a ratio at least a

b .

11

0 10 20 30 40 50 60 70 80 90 100 110

200

400

600

800

1,000

|V |

ru
nn

in
g

tim
e

(s
ec

on
ds

) PI-N
PI-R
EG-N
EG-R
ZP-N
ZP-R

(a) SPRAND-4 with W = 10, ρ = 1
|V |2 .

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000

10

20

30

40

|V |

ru
nn

in
g

tim
e

(s
ec

on
ds

) PI-N
PI-R ρ = 10−13

PI-R ρ = 10−10

PI-R ρ = 10−5

(b) SPRAND-4 with W = 50.

0 10 20 30 40 50 60 70 80 90 100

200

400

600

800

1,000

|V |

ru
nn

in
g

tim
e

(s
ec

on
ds

) PI-N PI-R
EG-N EG-R
ZP-N ZP-R

(c) TOR with W = 10, ρ = 1
|V |2 .

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000

50

100

|V |

ru
nn

in
g

tim
e

(s
ec

on
ds

) PI-N
PI-R ρ = 10−13

(d) TOR with W = 50.

Fig. 6. Experimental results of running the algorithms on natural-weighted synthetic graphs.

12

0 10 20 30 40 50 60 70 80 90 100 110

1,000

2,000

|V |

ru
nn

in
g

tim
e

(s
ec

on
ds

)
PI-N PI-R
EG-N EG-R
ZP-N ZP-R

(a) SPRAND-4 with W = 10, ρ = 10−5.

0 10 20 30 40 50 60 70 80 90 100

500

1,000

|V |

ru
nn

in
g

tim
e

(s
ec

on
ds

)

PI-N PI-R
EG-N EG-R
ZP-N ZP-R

(b) TOR with W = 10, ρ = 10−5.

Fig. 7. Experimental results on real-weighted synthetic graphs, where ρ = 10−5.

Proposition 6 ([1]). Let Γ = (V,E,w1, w2, 〈V0, V1〉) be a RG. The outcome Val(π) of any play π of Γ is in the value set
S =

{
a
b | 0 ≤ a ≤|V | ·W, 0 < b ≤|V | ·W

}
∪ {∞}. If w1, w2 : E → N, this set is finite and has size |S| = O(|V |2 ·W 2).

The outcome Val(π) only considers the weights in the limit, so only cycles in the play are relevant, which is also
reflected in Proposition 5. The cycle length can vary from 1 to |V |, and the costs w1 and w2 per edge from 0 to W ,
so the costs per cycle vary from 0 to |V | ·W , for both the numerator and the denominator of the outcome Val(π). If
denominator b = 0, Val(π) =∞. In the remainder of this section, we describe the complexity bounds of the algorithms
presented in this paper.

B. Reduction to Mean-Payoff Games
Lemma 7 (Value Decision Problem [1]). Let Γ = (V,E,w1, w2, 〈V0, V1〉) be a RG with maximal weight W . Given a ratio
a
b with 0 ≤ a ≤|V | ·W and 0 < b ≤|V | ·W , we can decide whether a state v ∈ V has value Val(v) = a

b , Val(v) < a
b or

Val(v) > a
b by a reduction to a decision for a mean-payoff game. If w1, w2 : E → N, this can be done in O(|V |3 ·W 2 ·|E|)

time, and if w1, w2 : E → R≥0 in O(|V |2 ·W 2 ·|E| · ρ−1).

Proof. (Sketch) Create a mean-payoff game ΓMPG = (V,E,w, 〈V0, V1〉) with payoff function w(e) = b ·w1(e)− a ·w2(e).
Let Val(v) be the value in Γ, and ValMPG(v) be the value in ΓMPG. Now, Val(v) ≤ a

b implies ValMPG(v) ≤ 0, and
Val(v) ≥ a

b implies ValMPG(v) ≥ 0.
The decision in the mean-payoff game for natural weights can be made in O(|V |2 ·W ′ · |E|) [3], where W ′ is the

maximal weight in the mean-payoff game. Since, W ′ ≤ b ·W ≤|V | ·W 2, we get a complexity bound of O(|V |3 ·W 2 ·|E|).
In the derivation, the observation is used that the distance between the threshold 0 and the closest rational number
with a denominator of size at most n is 1/n.

For real-valued weights, we determine an estimate vk on the value that is within ρ of the actual value in O(k ·|E|),
using Theorem 2.1 in [3], and setting k = 2 ·|V | ·W ′ · ρ−1. This yields a complexity bound of O(|V |2 ·W 2 ·|E| · ρ−1).
Here, the closest distance is determined by ρ, instead of the fixed value 1/n.

13

Theorem 8 (Value Problem [1]). Let Γ = (V,E,w1, w2, 〈V0, V1〉) be a RG with maximal weight W . Val(v) for each
state v ∈ V can be computed in O(|V |3 ·W 2 · |E| · log(|V | ·W)) if w1, w2 : E → N, and in O(|V |2 ·W 2 · |E| · ρ−1) if
w1, w2 : E → R≥0.

Proof. For natural weights, use the decision problem from Lemma 7 to perform a binary search on the possible values
S \ {∞}. If the ratio is greater than |S| ·W , it is infinite. For real-valued weights, use the result of Lemma 7, which
gives an outcome within ρ of the actual value.

Theorem 9 (Optimal Strategy Synthesis Problem [1]). Let Γ = (V,E,w1, w2, 〈V0, V1〉) be a RG with weights w1, w2 : E →
N and maximal weight W . Optimal memoryless strategies for both players can be found inO

(
|V |4 ·W 2 · log

(
|E|
|V |

)
·|E| · log(|V | ·W)

)
.

Proof. Using Proposition 6 in a binary search over values S \ {∞}. The value of each state v ∈ V , can be computed in
O(|V |3 ·W 2 ·|E| · log(|V | ·W)). The group testing technique can be applied to compute optimal positional strategies
with O(|V | · log(|E||V |)) value computations.

Theorem 10. Let Γ = (V,E,w1, w2, 〈V0, V1〉) be a RG with weights w1, w2 : E → R≥0 and maximal weight W . Optimal

memoryless strategies for both players can be found in O
(
|V |3 ·W 2 · log

(
|E|
|V |

)
·|E| · ρ−1

)
.

Proof. Using Lemma 7, the value of a vertex v ∈ V can be computed in O(|V |2 ·W 2 ·|E| · ρ−1) if w1, w2 : E → R≥0.

The group testing technique of [3] can be used to compute optimal positional strategies with O
(
|V | · log

(
|E|
|V |

))
value

computations.

C. Reduction to Energy Games
Lemma 11 (Value Decision Problem). Let Γ = (V,E,w1, w2, 〈V0, V1〉) be a RG with maximal weight W and w1, w2 :
E → R≥0. Given a ratio a

b with 0 ≤ a ≤|V | ·W and 0 < b ≤|V | ·W , we can decide whether a state v ∈ V has value
Val(v) = a

b , Val(v) < a
b or Val(v) > a

b by a reduction to a decision for an energy game in O(|V |2 ·W 2 ·|E|) time.

Proof. (Sketch) Create an energy game ΓEG = (V,E,w, 〈V0, V1〉) with edge weights w(e) = b · w1(e)− a · w2(e). Let
Val(v) be the value in Γ, and ValEG(v) be the value in ΓEG. Now, Val(v) ≤ a

b implies ValEG(v) ≤ 0, and Val(v) ≥ a
b

implies ValEG(v) ≥ 0.
The crucial observation here is the following equivalence. Given a ratio a

b , we can compare this ratio to the cycle
ratio of some cycle c = vi, . . . , vn with n > 0, and rewrite it to a decision on an energy game value:

Σn−1
i=0 w1(vi, vi+1)

Σn−1
i=0 w2(vi, vi+1)

≥ a

b
⇔ Σn−1

i=0 (b · w1(vi, vi+1)− a · w2(vi, vi+1)) ≥ 0.

The decision in the energy game can be made in O(|V | ·W ′ ·|E|) [3], where W ′ is the maximal weight in the energy
game. Since, W ′ ≤ b ·W ≤|V | ·W 2, we get a complexity bound of O(|V |2 ·W 2 ·|E|).

Theorem 12 (Value and Optimal Strategy Synthesis Problem). Let ΓRG = (V,E,w1, w2, 〈V0, V1〉) be a RG with
weights w1, w2 : E → N and maximal weight W . Optimal memoryless strategies for both players can be found in
O((log(|V |) + log(W)) ·|V |2 ·W 2 ·|E|).

Proof. The maximal distance between two values in S is |V |·W−(1/(|V |·W)), and the minimal distance is 1/((V −1)·V).

Therefore, the height of the tree of recursive calls is bounded by O
(

log
(

(|V |·W−(1/(|V |·W)))
1/((V−1)·V)

))
≤ O

(
log(|V | ·W)

)
.

Since each reduction to a decision on an energy game is bounded by O(|V |2 ·W 2 ·|E|), we obtain a running time of
O((log(|V |) + log(W)) ·|V |2 ·W 2 ·|E|).

Theorem 13. Let ΓRG = (V,E,w1, w2, 〈V0, V1〉) be a RG with weights w1, w2 : E → R≥0 and maximal weight W .
Optimal memoryless strategies for both players can be found in O((log(|V |) + log(W) + log(ρ)) ·|V |2 ·W 2 ·|E|).

Proof. The maximal distance between two values in S is bounded by |V | ·W , and the minimal distance considered
is ρ ≤ 1. Therefore, the height of the tree of recursive calls is bounded by O

(
log
(
|V |·W
ρ

))
= O

(
log
(
|V | ·W · ρ−1)).

Since each reduction to a decision on an energy game is bounded by O(|V |2 ·W 2 ·|E|), we obtain a running time of
O((log(|V |) + log(W) + log(ρ−1)) ·|V |2 ·W 2 ·|E|).

14

D. Policy Iteration
Theorem 14 (Value and Optimal Strategy Synthesis Problem). Let ΓRG = (V,E,w1, w2, 〈V0, V1〉) be a RG with
weights w1, w2 : E → N and maximal weight W . Optimal memoryless strategies for both players can be found in
O(|V |14 · |E| · |W |4).

Proof. This bound is calculated following the derivation in [5]. We first derive upper bounds on the values on the
vectors r and d. For ratio values, ri(v) ≤ |V | ·W for v ∈ V . The distances are computed by the weight function
w′(u,w) = r(v)D · w1(u,w)− r(v)N · w2(u,w). Given the maximal length |V | − 1 of a simple path, the maximal weight
of this path is bounded by (|V | − 1) · ((|V | ·W) ·W) ≤|V |2 ·W 2. Value di(v) for some v ∈ V is increased only if the
ratios of two cycles were the same. The number of times a new cycle is formed with the same ratio value is bounded by
|V | [4]. So di(v) ≤|V |3 ·W 2 for v ∈ V .

In each iteration of PI-N, either ri increases or di increases. If ri increases, it does so by at least 1/(|V | · (|V | − 1)).
Given the maximum ratio value of |V | ·W , and the fact that we have |V | ri(v)-values, the number of iterations in which
ri increases is O

(
|V |4 ·W

)
. If ri does not increase, di increases, and it must increase by at least 1/(|V | ·W). Therefore,

the number of iterations between two increases of ri is always in O
(
|V |5 ·W 2

)
. Together, the number of iterations of

the while loop in PI-N is in O
(
|V |9 ·W 3

)
.

In MCT, the number of iterations where ri decreases is O
(
|V |4 ·W

)
. The number of iterations where di decreases is

always O
(
|V |
)
. In this situation, the algorithm computes minimum-weight paths in |V | passes over the edges. So the

complexity of MCT is O
(
|V |5 ·|E| ·W

)
. Combined, the complexity of PI-N is O

(
|V |14 ·|E| ·W 4

)
.

Theorem 15. Let ΓRG = (V,E,w1, w2, 〈V0, V1〉) be a RG with weights w1, w2 : E → R≥0 and maximal weight W .
Optimal memoryless strategies for both players can be found in O(|V |8 · |E| · |W |3 · ρ−3).

Proof. This bound is calculated following the derivation in [5]. We use the same bounds on vector entries in r and d as
in the proof of Theorem 14. For the ratio values ri(v) ≤|V | ·W for v ∈ V . For the distance values di(v) ≤|V |3 ·W 2 for
v ∈ V .

In each iteration of PI-R, either ri increases or di increases. If ri increases, it does so by at least ρ. Given the
maximum ratio value of |V | ·W , and the fact that we have |V | ri(v)-values, the number of iterations in which ri increases
is O

(
|V |2 ·W · ρ−1

)
. If ri does not increase, di increases, and it must increase by at least ρ. Therefore, the number of

iterations between two increases of ri is always in O
(
|V |3 ·W · ρ−2

)
. Together, the number of iterations of the while

loop in PI-N is in O
(
|V |5 ·W 2 · ρ−2

)
.

In MCT, the number of iterations where ri decreases is O
(
|V |2 ·W · ρ−1

)
. The number of iterations where di

decreases is always O
(
|V |
)
. In this situation, the algorithm computes minimum-weight paths in |V | passes over the edges.

So the complexity of MCT is O
(
|V |3 ·|E| ·W · ρ−1

)
. Combined, the complexity of PI-R is O

(
|V |8 ·|E| ·W 3 · ρ−3

)
.

15

Algorithm 1. Zwick-Paterson for graphs with w1, w2 ∈ N (ZP-N).

1: proc GetStrategy(Γ = (V,E,w1, w2, 〈V0, V1〉))
2: val← ComputeValues(Γ)
3: Eout(v)← list of all outgoing edges of v
4: s←

∣∣Eout(v)
∣∣

5: foreach v ∈ V do
6: S(v)← FindOutgoingEdge(

Γ, v, val(v), Eout(v), 1, s, ρ)
7: return S . S : V → V is an optimal strategy
1: proc FindOutgoingEdge(Γ, v, val, edges, l, r)
2: if l = r then
3: return edges[l]
4: else
5: middle← b(l + r)/2c
6: Esub ← Γ(E) ∩ {edges[i] |

l ≤ i ≤ middle}
7: Γsub ← Subgraph(Γ, Esub)
8: values← ComputeValues(Γsub)
9: if values(v) = val then

10: . there is a positional optimal strategy
that does not use any of the
removed edges

11: FindOutgoingEdge(
Γ, v, val, edges, l,middle)

12: else
13: FindOutgoingEdge(

Γ, v, val, edges,middle, r)
1: proc ComputeValues(Γ)
2: foreach v ∈ V do
3: val(v)← ComputeValue(Γ, v, 0, V ·W)
4: return val . val(v) is the optimal value for

v ∈ V
1: proc ComputeValue(Γ, v, l

N

lD
, r
N

rD
)

2: mN

mD
← 1

2

(
lN

lD
+ rN

rD

)
. split range

3: m1 ← a1
b1
← max{a

b
| 1 ≤ a, b ≤|V | ·W

∧ l
N

lD
≤ middle}

4: m2 ← a2
b2
← min{a

b
| 1 ≤ a, b ≤|V | ·W

∧ r
N

rD
≥ a

b
≥ middle}

5: ΓMPG = (V,E, a2 · w1 − a1 · w2, 〈V0, V1〉)
6: (V<m1 , V=m1 , V>m1)←

ThreeWayPartition(ΓMPG,m1)
7: if v ∈ V=m1 then
8: return m1
9: else if v ∈ V<m1 then

10: ComputeValue(Γ, v,|V | , l
N

lD
,m1)

11: else . v ∈ V>m1

12: ComputeValue(Γ, v,|V | ,m2,
rN

rD
)

1: proc ThreeWayPartition(
ΓMPG = (V,E,w, 〈V0, V1〉), ν)

2: k ← 4 ·|V |3 ·|W |
3: est← ComputeEstimates(ΓMPG, k)
4: if V ≤ 2 then . avoid division by zero
5: δ ← 0
6: else
7: δ ← 1/(2 ·|V | ·|V − 1|)
8: smaller ← {v | v ∈ V ∧ est(v) < ν − δ}
9: equal← {v | v ∈ V ∧ ν − δ ≤ est(v) ≤ ν + δ}

10: larger ← {v | v ∈ V ∧ est(v) > ν + δ}
11: return (smaller, equal, larger)

16

Algorithm 2. Zwick-Paterson for graphs with w1, w2 ∈ R (ZP-R).

1: proc GetStrategy(Γ = (V,E,w1, w2, 〈V0, V1〉, ρ))
2: val← ComputeValues(Γ, ρ)
3: Eout(v)← list of all outgoing edges of v
4: s←

∣∣Eout(v)
∣∣

5: foreach v ∈ V do
6: S(v)← FindOutgoingEdge(

Γ, v, val(v), Eout(v), 1, s, ρ);
7: return S . S : V → V is an optimal strategy
1: proc FindOutgoingEdge(Γ, v, val, edges, l, r, ρ)
2: if l = r then
3: return edges[l]
4: else
5: middle← b(l + r)/2c
6: Esub ← Γ(E) ∩ {edges[i] |

l ≤ i ≤ middle}
7: Γsub ← Subgraph(Γ, Esub)
8: values← ComputeValues(Γsub, ρ)
9: if (values(v)− val) < ρ then

10: . there is a positional optimal strategy
that does not use any of the
removed edges

11: FindOutgoingEdge(
Γ, v, val, edges, l,middle)

12: else
13: FindOutgoingEdge(

Γ, v, val, edges,middle, r)
1: proc ComputeValues(Γ, ρ)
2: foreach v ∈ V do
3: val(v)← ComputeValue(Γ, v, 0, V ·W,ρ)
4: return val . val(v) is the optimal value for

v ∈ V

1: proc ComputeValue(Γ, v, l, r, ρ)
2: m← (l + r)/2 . split range
3: ΓMPG = (V,E, a2 · w1 − a1 · w2, 〈V0, V1〉)
4: (V<m, V=m, V>m)←

ThreeWayPartition(ΓMPG,m, ρ)
5: if v ∈ V=m then
6: return m
7: else if v ∈ V<m then
8: ComputeValue(Γ, v,|V | , l,m, ρ)
9: else . v ∈ V>m

10: ComputeValue(Γ, v,|V | ,m, r, ρ)

1: proc ThreeWayPartition(ΓMPG =
(V,E,w, 〈V0, V1〉), ν, ρ)

2: k ← (2 ·|V | ·|W |)/ρ
3: est← ComputeEstimates(ΓMPG, k)
4: δ ← ρ
5: smaller ← {v | v ∈ V ∧ est(v) < ν − δ}
6: equal← {v | v ∈ V ∧ ν − δ ≤ est(v) ≤ ν + δ}
7: larger ← {v | v ∈ V ∧ est(v) > ν + δ}
8: return (smaller, equal, larger)

1: proc ComputeEstimates(ΓMPG =
(V,E,w, 〈V0, V1〉), k)

2: foreach v ∈ V do
3: val0(v)← 0
4: for i← 1 to k do
5: foreach v ∈ V do
6: if v ∈ V0 then
7: valk(v) = maxv,u∈E{

w(v, u) + valk-1(u)}
8: else . v ∈ V1
9: valk(v) = minv,u∈E{

w(v, u) + valk-1(u)}
10: foreach v ∈ V do . compute estimates
11: if k = 0 then
12: est(v)← valk(v)
13: else
14: est(v)← valk(v)/k
15: return est

Algorithm 3. Energy Game reduction for graphs with w1, w2 ∈ R (EG-R).

1: proc EG-R(Γ = (V,E,w1, w2, 〈V0, V1〉), fl, l, r)
2: require w1, w2 ∈ R
3: m← (l + r)/2 . split range
4: if |r − l| < ρ then
5: foreach v ∈ V do
6: val(v)← l
7: if v ∈ V0 then
8: S(v)← min{fl(u) | (v, u) ∈ E}
9: else

10: S(v)← max{fl(u) | (v, u) ∈ E}
11: return (S, val)
12: else
13: . determine V≥m(fm(v) 6= >),

V<m(fm(v) = >)
14: fm ← SolveEG(

ΓEG = (V,E,w1 −m · w2, 〈V0, V1〉))

15: V<m ← {v | fm(v) = >}
16: V≥m ← {v | fm(v) 6= >}
17: . recursive calls
18: Γ< ← (V<m, E � V<m, w1 � V<m,

w2 � V<m, 〈V0 ∩ V<m, V1 ∩ V<m〉)
19: (Sl, vall)← EG-R(Γ<, fl, l,m)
20: Γ≥ ← (V≥m, E � V≥m, w1 � V≥m,

w2 � V≥m, 〈V0 ∩ V≥m, V1 ∩ V≥m〉)
21: (Sr, valr)← EG-R(f,Γ≥, fm,m, r)
22: return (Sl ∪ Sr, vall ∪ valr)
23: EG-R((V,E,w1, w2, 〈V0, V1〉), fl, l, r,0, 0,W)

. (∀v ∈ V : 0(v) = 0)

1: proc SolveEG(ΓEG = (V,E,w, 〈V0, V1〉))
2: . see pseudo code in [6]

17

Algorithm 4. Energy Game reduction for graphs with w1, w2 ∈ N (EG-N).

1: proc EG-N(Γ = (V,E,w1, w2, 〈V0, V1〉), l
N

lD
, r
N

rD
)

2: require w1, w2 ∈ N
3: mN

mD
← 1

2

(
lN

lD
+ rN

rD

)
. split range

4: m1 ← a1
b1
← max{a

b
| 1 ≤ a, b ≤|V | ·W

∧ l
N

lD
≤ mN

mD
}

5: m2 ← a2
b2
← min{a

b
| 1 ≤ a, b ≤|V | ·W

∧ r
N

rD
≥ a

b
≥ mN

mD
}

6: . determine V≥a1 (f(v) 6= >), V<a1 (f(v) = >)
7: f1 ← SolveEG(Γ1

EG = (V,E,
b1 · w1 − a1 · w2, 〈V0, V1〉))

8: . determine V≤a1 , V>a1
9: f2 ← SolveEG(Γ2

EG = (V,E,
a1 · w2 − b1 · w1, 〈V1, V0〉))

10: . determine V≥a2 , V<a2
11: f3 ← SolveEG(Γ3

EG = (V,E,
b2 · w1 − a2 · w2, 〈V0, V1〉))

12: . determine V≤a2 , V>a2
13: f4 ← SolveEG(Γ4

EG = (V,E,
a2 · w2 − b2 · w1, 〈V1, V0〉))

14: foreach v ∈ V do
15: if f1(v) 6= > ∧ f2(v) 6= > then

16: val(v)← a1
17: if v ∈ V0 then
18: S(v)← min{f1(u) | (v, u) ∈ E}
19: else
20: S(v)← max{f1(u) | (v, u) ∈ E}
21: if f3(v) 6= > ∧ f4(v) 6= > then
22: val(v)← a2
23: if v ∈ V0 then
24: S(v)← min{f3(u) | (v, u) ∈ E}
25: else
26: S(v)← max{f3(u) | (v, u) ∈ E}
27: V<a1 ← {v | f1(v) = >}
28: V>a2 ← {v | f4(v) = >}

29: . recursive calls
30: Γsub1RG ← (V<a1 , E � V<a1 , w � V<a1 ,

〈V0 ∩ V<a1 , V1 ∩ V<a1 〉)
31: EG-N(Γsub1RG , l

N

lD
, a1)

32: Γsub2RG ← (V>a2 , E � V>a2 , w � V>a2 ,
〈V0 ∩ V>a2 , V1 ∩ V>a2 〉)

33: EG-N(Γsub2RG , a2,
rN

rD
)

1: proc SolveEG(ΓEG = (V,E,w, 〈V0, V1〉))
2: . see pseudo code in [6]

18

Algorithm 5. Policy Iteration for graphs with w1, w2 ∈ N (PI-N), based on [5].

1: proc PI-N(Γ = (V,E,w1, w2, 〈V0, V1〉))
2: ensure: σi : Vi → V is an optimal strategy

for player i, ri(v) is the optimal value
for v ∈ V .

3: i← −1
4: improvement← true
5: d−1 ← 0V
6: r−1 ← −∞V

7: σ0
0 ← arbitrary strategy of player 0

8: σ0
1 ← arbitrary strategy of player 1

9: while improvement do
10: i := i+ 1
11: . improve positional strategy of player 1,

update vectors.
12: (di, ri, σi+1

1)← MCT(Γ, σi0, σi1, di−1, ri−1)
13: σi+1

0 ← σi0
14: improvement← false
15: . improve positional strategy of player 0.
16: foreach (v, u) ∈ E ∩ V0 × V do
17: if ri(v) < ri(u) ∨ (ri(v) = ri(u)∧

di(v) < di(u) + ri(u)D · w1(v, u) −
ri(u)N · w2(v, u)) then

18: σi+1
0 (v)← u

19: improvement← true

20: return (ri, σi0, σi1)
1: proc MCT(Γ, σi0, σi1, di−1, ri−1))
2: . adapted from Cochet-Terrasson et al. [4]
3: t← −1
4: improvement← true
5: σi,00 ← σi0
6: while improvement do
7: t← t+ 1
8: (di,t, ri,t)← EvaluateStrategy(

G
σi0∪σ

i,t
1
, di−1, ri−1)

9: σi,t+1
1 ← σi,t1

10: improvement← false
11: foreach (v, u) ∈ E ∩ V1 × V do
12: . improve strategy of player 1
13: if ri,t(v) > ri,t(u) ∨ (ri,t(v) = ri,t(u)

∧ di,t(v) > di,t(u) + ri,t(u)D · w1(v, u) −
ri,t(u)N · w2(v, u)) then

14: σi,t+1
1 (v)← u

15: improvement← true

16: return (di,t, ri,t, σi,t1)
1: proc EvaluateStrategy(G, di−1, ri−1)
2: . adapted from [4]
3: (Vs, ri,t)←

FindCyclesInGraph(G
σi0∪σ

i,t
1

)
4: (di,t, ri,t)←

ComputeDistances(G,Vs, ri,t, di−1, ri−1)
5: return (di,t, ri,t)

1: proc FindCyclesInGraph(G
σi0∪σ

i,t
1

)
2: S ← ∅
3: foreach v ∈ V do
4: visited(v)← ⊥
5: foreach v ∈ V do
6: if visited(v) = ⊥ then
7: u← v
8: while visited(u) = ⊥ do
9: visited(u)← v

10: u← successor(u)
11: if visited(u) = v then
12: . cycle found; find smallest vertex

and cycle ratio.
13: vs ← u
14: x← successor(u)
15: cw1 ← w1(u, successor(u))
16: cw2 ← w2(u, successor(u))
17: while x 6= u do
18: if x < vs then

. smaller vertex found
19: vs ← x
20: cw1 ← cw1 + w1(u, successor(x))
21: cw2 ← cw2 + w2(u, successor(x))
22: x← successor(x)
23: ri,t(vs)← cw1/cw2
24: S ← S ∪ {vs}
25: return (S, ri,t)
1: proc ComputeDistances(G

σi0∪σ
i,t
1
, S, ri,t, di−1, ri−1)

2: foreach v ∈ V do
3: visited(v)← false

4: foreach u ∈ S do
5: if ri−1(u) = ri,t(u) then
6: di,t(u)← di−1(u)
7: else
8: di,t(u)← 0
9: visited(u)← true

10: foreach v ∈ V do
11: if ¬visited(v) then
12: u← v
13: while ¬visited(u) do
14: visited(u)← true
15: s.push(u)
16: u← successor(u)
17: while ¬s.empty() do
18: x← s.pop()
19: ri,t(x)← ri,t(u)
20: di,t(x)← di,t(u) + ri,t(u)D·

w1(x, u)− ri,t(u)N · w2(x, u)
21: u← x
22: return (di,t, ri,t)

19

Algorithm 6. Policy Iteration for graphs with w1, w2 ∈ R (PI-R), based on [5].

1: proc PI-R(Γ = (V,E,w1, w2, 〈V0, V1〉))
2: ensure: σi : Vi → V is an optimal strategy

for player i, ri(v) is the optimal value
for v ∈ V .

3: i← −1
4: improvement← true
5: d−1 ← 0V
6: ω−1 ← 0V
7: r−1 ← −∞V

8: σ0
0 ← arbitrary strategy of player 0

9: σ0
1 ← arbitrary strategy of player 1

10: while improvement do
11: i := i+ 1
12: . improve strategy of player 1,

update vectors.
13: (di, ri, σi+1

1 , ωi)← MCT(
Γ, σi0, σi1, di−1, ri−1, ωi−1, ρ)

14: σi+1
0 ← σi0

15: improvement← false
16: . Improve positional strategy of player 0.
17: foreach (v, u) ∈ E ∩ V0 × V do
18: δ ← max(ωi(v), ωi(u) + w2(v, u)) · ρ
19: if ri(v) <ρ ri(u) ∨ (ri(v) =ρ ri(u) ∧

di(v) <2δ di(u) + ri(u)D·
w1(v, u)− ri(u)N · w2(v, u)) then

20: σi+1
0 (v)← u

21: improvement← true

22: return (ri, σi0, σi1)
1: proc MCT(Γ, σi0, σi1, di−1, ri−1, ωi−1, ρ))
2: . adapted from Cochet-Terrasson et al. [4]
3: t← −1
4: improvement← true
5: σi,00 ← σi0
6: while improvement do
7: t← t+ 1
8: (di,t, ri,t, ωi,t)← EvaluateStrategy(

G
σi0∪σ

i,t
1
, di−1, ri−1, ωi−1, ρ)

9: σi,t+1
1 ← σi,t1

10: improvement← false
11: foreach (v, u) ∈ E ∩ V1 × V do
12: . improve strategy of player 1
13: δ ← max(ωi,t(v), ωi,t(u) + w2(v, u)) · ρ

14: if ri,t(v) >ρ ri,t(u) ∨ (ri,t(v) =ρ

ri,t(u) ∧ di,t(v) >2δ di,t(u) +
ri,t(u)D · w1(v, u)− ri,t(u)N · w2(v, u))

then
15: σi,t+1

1 (v)← u
16: improvement← true

17: return (di,t, ri,t, σi,t1 , ωi,t)
1: proc EvaluateStrategy(G, di−1, ri−1, ωi−1, ρ)
2: . adapted from [4]
3: (Vs, ri,t)←

FindCyclesInGraph(G
σi0∪σ

i,t
1

)
4: (di,t, ri,t, ωi,t)← ComputeDistances(

G,Vs, ri,t, di−1, ri−1, ωi−1, ρ)
5: return (di,t, ri,t, ωi,t)
1: proc ComputeDistances(

G
σi0∪σ

i,t
1
, S, ri,t, di−1, ri−1, ωi−1, ρ)

2: foreach v ∈ V do
3: visited(v)← false

4: foreach u ∈ S do
5: if ri−1(u) =ρ ri,t(u) then
6: di,t(u)← di−1(u)
7: ωi,t(u)← ωi−1(u)
8: else
9: di,t(u)← 0

10: ωi,t(u)← 0
11: visited(u)← true

12: foreach v ∈ V do
13: if ¬visited(v) then
14: u← v
15: while ¬visited(u) do
16: visited(u)← true
17: s.push(u)
18: u← successor(u)
19: while ¬s.empty() do
20: x← s.pop()
21: ri,t(x)← ri,t(u)
22: di,t(x)← di,t(u) + ri,t(u)D·

w1(x, u)− ri,t(u)N · w2(x, u)
23: ωi,t(x)← ωi,t(u) + w2(x, u)
24: u← x
25: return (di,t, ri,t)

Acknowledgments
This research is supported by the Dutch Technology Foundation NWO-TTW, carried out as part of the Robust

Cyber-Physical Systems (RCPS) program, project number 12694.

References
[1] R. Bloem, K. Greimel, T. A. Henzinger, and B. Jobstmann, “Synthesizing robust systems,” in Formal Methods in Computer-Aided

Design, 2009. FMCAD 2009. Austin, TX, USA: IEEE, nov 2009, pp. 85–92.
[2] A. Ehrenfeucht and J. Mycielski, “Positional strategies for mean payoff games,” International Journal of Game Theory, vol. 8, no. 2, pp.

109–113, 1979.
[3] U. Zwick and M. Paterson, “The complexity of mean payoff games on graphs,” Theoretical Computer Science, vol. 158, no. 1-2, pp.

343–359, 1996.
[4] J. Chaloupka, Parallel Algorithms for Mean-Payoff Games: An Experimental Evaluation. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2009, pp. 599–610. [Online]. Available: https://doi.org/10.1007/978-3-642-04128-0 54
[5] ——, “Algorithms for mean-payoff and energy games,” Ph.D. dissertation, Masarykova univerzita, Fakulta informatiky, Brno, 2011.
[6] L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J. F. Raskin, “Faster algorithms for mean-payoff games,” Formal Methods in System

Design, vol. 38, no. 2, pp. 97–118, 2011.
[7] R. Bloem, K. Chatterjee, K. Greimel, T. A. Henzinger, G. Hofferek, B. Jobstmann, B. Könighofer, and R. Könighofer, “Synthesizing

robust systems,” Acta Informatica, 2013.
[8] S. Schewe, “An optimal strategy improvement algorithm for solving parity and payoff games,” in Computer Science

Logic: 22nd International Workshop, CSL 2008, 17th Annual Conference of the EACSL, Bertinoro, Italy, September 16-19,
2008. Proceedings, M. Kaminski and S. Martini, Eds. Berlin, Heidelberg: Springer, 2008, pp. 369–384. [Online]. Available:
https://doi.org/10.1007/978-3-540-87531-4 27

[9] J. Fearnley, Computer Aided Verification: 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part II. Springer International Publishing, 2017, ch. Efficient Parallel Strategy Improvement for Parity Games, pp.
137–154. [Online]. Available: https://doi.org/10.1007/978-3-319-63390-9 8

20

[10] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba, “Infinite runs in weighted timed automata with energy constraints,” in
Proceedings of the 6th International Conference on Formal Modelling and Analysis of Timed Systems (FORMATS’08), ser. Lecture
Notes in Computer Science, F. Cassez and C. Jard, Eds., vol. 5215. Saint-Malo, France: Springer, sep 2008, pp. 33–47.

[11] V. Dhingra and S. Gaubert, “How to solve large scale deterministic games with mean payoff by policy iteration,” in Proceedings of the
1st International Conference on Performance Evaluation Methodolgies and Tools, VALUETOOLS 2006, Pisa, Italy, October 11-13,
2006, 2006, p. 12.

[12] A. Condon, “On algorithms for simple stochastic games,” in Advances in Computational Complexity Theory, volume 13 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1993, pp. 51–73.

[13] B. Naveh et al. (2017) JGraphT. [Online]. Available: http://jgrapht.sourceforge.net
[14] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest paths algorithms: Theory and experimental evaluation,” in Proceedings of

the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. 23-25 January 1994, Arlington, Virginia., 1994, pp. 516–525.
[15] B. V. Cherkassky and A. V. Goldberg, “Negative-cycle detection algorithms,” Mathematical Programming, vol. 85, no. 2, pp. 277–311,

Jun 1999. [Online]. Available: https://doi.org/10.1007/s101070050058
[16] B. van der Sanden, J. Bastos, J. Voeten, M. Geilen, M. A. Reniers, T. Basten, J. Jacobs, and R. R. H. Schiffelers, “Compositional

specification of functionality and timing of manufacturing systems,” in 2016 Forum on Specification and Design Languages, FDL
2016, Bremen, Germany, September 14-16, 2016, R. Drechsler and R. Wille, Eds. IEEE, 2016, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/FDL.2016.7880372

