
Simulation flow

Premadona meeting 9-9-2005

We tend to distinguish three levels of simulation. Note that depending on
the available man power in Premadona, we can probably not have all levels
available at TUE.

At the highest level (transaction) we have available POOSL en
YAPI/HAPI. POOSL allows statistical analysis en co-simulation of
streaming and control. It doesn’ t have a C-entry, so functional verification
of C-code is not possible. HAPI has a C-entry. For both options numbers are
required with respect to execution time on the computational elements and
latency/throughput of the communication channels. In order to generate
these numbers a compilation/profil ing step and a network generation step
has to be performed.

Because of the relatively small simulation times at this level, it is probably most suitable for DSE, both
wrt mapping and architectural exploration. We distinguish two forms of exploration wrt architecture:
the generation of (pareto) points on parameters like the number of processors, the bandwidth made
available for a channel, the buffer size in a network interface, etc. The other type is more conceptual;
what kind of arbitration mechanism is applied in router, network interface, memory access, and
processor? Do we support preemption? What routing algorithm is used? The token buffer memory in
the processing tiles; does it consist of fixed-size fifos, or are buffers dynamically configured? Do we
use point-to-point connections besides an aethereal network? What does a run-time resource manager
look like? Can we find SDF models of our architectural concepts?
For the first type of exploration it is convenient to have an automated mapping with a machine
description file (MDF) and a mapping file. For the latter type of exploration it is convenient to have a
high-level flexible environment that allows to incorporate user-defined models of architectural
components. Note that these kind of architectural features always require a low-level simulation in the
end, in order to verify the implementation.
The CASSE simulation environment from Victor Reyes does work with an MDF, so that would allow
architectural exploration on parameters, but a model of a network is not incorporated. It is however,
sufficiently flexible to allow incorporation of user-defined component models.

The second level is cycle-accurate. Also the aethereal flit-level simulator is at this level. Two portugese
masters students have built a simulator at this level in the Hijdra project. The platform is uniform
SWArm (Software Arm). I will go talk with them.

The lowest level is RT-level, l ike system-C (or Hendel-C ?). Because of extensive run-times, this is
only suitable for verification of components. Alternatively, an FPGA implementation is a lot faster. An
estimation is testing 1 implementation in an hour. This is not sufficient for exploration on parameters,
but it might be good enough for exploring concepts.

For a Ph.D. (architecture) topic for Akash I see two possibilities: High-level architecture exploration
(parameters, but I prefer concepts). This is a deviation from his current activity, whereas his FPGA
activity is unique for TUE and Philips. The alternative is to explore concepts (not parameters) in FPGA
directly with the advantage of providing detailed verification of an architectural concept in the context
of the completely implemented system. A potential disadvantage is the amount of work to implement a

2 cycle
accurate, flit-
level

1Transaction-
level

Simulate FPGA

1Transaction-
level

Compilation Network
generation

number of applications. We preferably don’ t want to restrict ourselves to a single application because
we might tune our architectural concepts to a single application, and because we also would like to
investigate resource arbitration and linked to that, an on-chip resource manager (HW or SW) that can
handle multiple applications. This is still possible with a single application if we duplicate jobs, eg
multiple rectangles or multiple objects for a video-graphics decoder, or multiple MPEG4 streams for
the shape-texture decoder from Milan. One interesting issue that can be explored (performance &
flexibility vs.cost) after an application is implemented in FPGA is resource arbitration; priority-based,
TDMA, credit based, ordered-transaction (Sriram) or a hybrid. Are some arbitration schemes better for
arbitrating processors, memory accesses, or the communication network? Can these mechanisms be
conveniently controlled by a resource manager? At what order of time intervals should this be
performed? Can we prevent application artifacts occurring during system reconfiguration (entering or
exiting of a job, or adaptability to changing computation requirements)?

On the topic of these architectural concepts there is potential overlap with the work of Arno, but I
think there are plenty issues to be explored in that area.

