Performance Modelling and Analysis Using POOSL for an
In-Car Navigation System*

Oana Florescu' Menno de Hoon?

Jeroen Voeten!? Henk Corporaal®

'Eindhoven University of Technology, 2Chess Information Technology BV,
3 Embedded Systems Institute

o.florescu@tue.nl

menno.de.hoon@chess.nl

j-p-m.voeten @tue.nl h.corporaal @tue.nl

Keywords: soft real-time systems, simulation-based estimations, worst case and average case analysis

Abstract

To ensure quality and performance of soft real-
time embedded systems, the evaluation of their prop-
erties is needed from early phases of the design.
These systems typically allow a certain rate of dead-
line misses. However, as they are often analysed us-
ing hard real-time techniques, which determine hard
bounds of their performance properties, they are over-
dimensioned and thus expensive. Using a case study
inspired by industrial practice, we present how to
compose a suitable model for soft real-time systems
based on the formally defined modelling language
POOSL. By means of simulations for different us-
age scenarios, evaluation of the timing properties of
the system is provided. Furthermore, we compare our
results with two other performance modelling tech-
niques, which are based on analytical computation,
showing that our approach leads to a more appropri-
ate dimensioning of soft real-time systems.

1 Introduction

Complex real-time embedded systems are usually
comprised of a combination of hardware and software
components that are supposed to synchronise and co-
ordinate different processes and activities. From early
stages of the design, many decisions must be made
to guarantee that the realisation of such a complex
machine meets all the functional and non-functional
(timing) requirements.

One of the main problems to address concerns the
most suitable architecture of the system such that all
the requirements are met. To properly deal with this
question, the common approaches are design space
exploration and system level performance analysis.

*This work has been carried out as part of the Boderc project
under the responsibility of the Embedded Systems Institute. This
project is partially supported by the Netherlands Ministry of Eco-
nomic Affairs under the Senter TS program.

Related Research. An extensive overview of
system-level design space exploration methodologies
is given in [1] and [2]. They range from ana-
lytical computation (Modular Performance Analysis
(MPA) [3], UPPAAL [4]) to simulation-based estima-
tion (Spade [5], Artemis [6]). The techniques for an-
alytically computing the performance of a system are
exhaustive in the sense that all possible behaviours of
the system are taken into account. Therefore, a practi-
cal problem of them is that they are not usually appli-
cable to industrial systems because of the state space
explosion problem. On the other hand, simulation of
models allows investigation of a limited number of all
the possible behaviours of the system. Consequently,
the obtained analysis results are estimates of the real
performance of the system.

To obtain credible results, both techniques require
that the models created are amenable to mathemati-
cal analysis (see [7]), using mathematical structures
like Real-Time Calculus [8] or timed automata [9].
As in general analytical approaches do not scale with
the complexity of the industrial systems, simulation-
based estimation of performance properties is used
more often. In this context, the estimation of perfor-
mance is based on statistical analysis of simulation
results.

In the past, performance analysis techniques were
applied mainly in the design of hard real-time sys-
tems. However, the higher demands on the quality
of products require such techniques also for soft real-
time systems, like DVD players for the synchronisa-
tion of the audio and video stream decoding, or print-
ers for the accuracy of printing an image on a sheet.
Often, in the analysis of such systems hard bounds of
their performance properties are determined because
the techniques available are not suitable enough. Con-
sequently, the resulting system is over-dimensioned.
Nevertheless, as long as no human life is endangered
by the incorrect behaviour of a system, the timing re-

quirements are not critical factors. Therefore, instead
of having all the deadlines met, one should be able
to reason about the rate of deadlines misses which is
allowed in soft real-time systems.

Contributions of this paper. In this paper, we
show how a formally defined modelling language,
called POOSL, can be used to model and explore the
design space of a soft real-time system. Moreover,
we show how the models can incorporate knowledge
about the varying timing behaviour of the system.
The analysis approach proposed for the evaluation of
the timing properties is not restricted to any schedul-
ing policy and provides results based on simulations
which are run until the desired accuracy is obtained.
By the means of a case study, we compare the re-
sults of our analysis approach with two other analyt-
ical techniques. We show that our method leads to a
better dimensioning of the system. We reduced with
more than 50% the required capacity of two proces-
sors from the architecture found suitable by the other
approaches.

The paper is organised as follows. The case study
is presented in sec. 2. In sec. 3, a short presentation
of the modelling language is given besides the de-
scription of the modelling approach for this system,
whereas in sec. 4 the results of the performance anal-
ysis are presented. Conclusions are drawn in sec. 5.

2 The In-Car Navigation System

The high-level view of an in-car navigation sys-
tem, considered as case study in this paper, is pre-
sented in fig. 1. There are three clusters of function-
ality: the man-machine interface (MMI) handles the
interaction with the user; the navigation functional-
ity (NAV) deals with route-planning and navigation
guidance; the radio (RAD) is responsible for basic
tuner and volume control, as well as receiving traf-
fic information from the network. For this system,
three application scenarios are possible. Users are al-
lowed to change the volume (ChangeVolume scenario
which is also shown in the UML diagram in fig. 2)
and to look addresses up in the maps in order to plan
their routes (ChangeAddr scenario). Moreover, the
system needs to handle timely the navigation mes-
sages received from the network (HandleTMC sce-
nario). All scenarios share the same platform, how-
ever, ChangeVolume and ChangeAddr cannot run in
parallel because they need the same knob for the se-
lection of the volume level or of the route in a list.
A detailed description of the system and its scenarios
can be found in [3].

Each of the scenarios has its own individual time-
liness requirements that need to be satisfied. These
requirements are specified in the UML diagram ac-
companying each scenario. For ChangeVolume, they
can be seen on the left side of fig. 2. However, these
requirements are not hard, as soft real-time systems

typically allow a certain percentage of missed timing
requirements. In this case, a rate of 5% misses is con-
sidered affordable.

Figure 1: In-car navigation system

The problem related to this system was fo find suit-
able platform candidates that meet the timing require-
ments of the application. For exploration of the design
space, a few available platforms, presented in fig. 3,
were analysed. Two approaches have been applied
for the analysis of this system, Modular Performance
Analysis (MPA) in [3] and UPPAAL in [10].

User Ml Radio

keyPress()

()

Tevents D =
per second <
(atmost)

Setvalume(
4 hytes AN Adjustvolume()
32¢second
4 bytes AN
32¢second

Getvalume(

NoticeAudibleChange()

NVC-KP < 200 msec L\

UpdateScreen()

NVC-NAC < 50 msec 1

Execution ime estimates

HandleKeyPress() 1ES instructions
Adjustvolume(1E5 instructions
UpdateScreen) 5ES instructions

Figure 2: ChangeVolume scenario

NoticeVisualChange()

MPA is an analytical technique in which the func-
tionality of a system is characterised at a high level
of abstraction by the incoming and outgoing event
rates, message sizes and execution times. Based on
Real-Time Calculus, hard upper and lower bounds of
the system performance are computed. While these
bounds are always hard, they are in general not exact,
meaning that they are larger/smaller than the actual
worst/best case. Thus, the analysis performed is con-
servative.

The UPPAAL model checker is a tool for mod-
elling and verifying networks of timed automata. The
analysis results obtained by applying this technique
are exact computations of the performance proper-
ties. Nevertheless, the method suffers severely from
the state space explosion problem. Limitations, stat-

ing for example that tasks can be preempted only up
to a certain number of times, are necessary, otherwise
model checking is not possible anymore. Moreover,
combination of scenarios with large difference in the
time scale of the requirements (milliseconds vs. sec-
onds) proved to be another problem for the model
checker.

22 MIPS 72 kbps 22 MIPS 57 kbps
Q> Q>
113 MIPS 11 MIPS 113 MIPS 11 MIPS
72 kops
(A) (8)

260 MIPS 22 MIPS 113 MIPS 130 MIPS 260 MIPS

72 kbps @ 72 kbps
o

Ll

© ©) ©

Figure 3: Platforms proposed for analysis

In this paper, we show how the in-car navigation
system can be modelled appropriately based on the
expressivity of POOSL modelling language. Further-
more, we show how the analysis results of the POOSL
model compare with the other two techniques and
how to dimension the system based on them.

3 Model of the System

One of the approaches for performing system-
atic design space exploration is the Y-chart scheme
(fig. 4), introduced in [11]. This scheme makes a dis-
tinction between applications (the required functional
behaviour) and platforms (the infrastructure used to
perform this functional behaviour). We have added to
this scheme the model of the environment connected
to the application that controls it. The design space
can be explored by evaluating different mappings of
applications onto platforms.

Modify Modify
application platform

Figure 4: Y-chart scheme

In the following, first a brief introduction of the
modelling language is provided. Afterwards, it will
be explained how the model of the in-car navigation
system was built according to the Y-chart scheme.

3.1 POOSL Modelling Language

To support the design and development of
real-time systems, the system-level design method

Software/Hardware Engineering (SHE) [12] pro-
vides a well-founded and expressive language,
Parallel Object-Oriented Specification Language
(POOSL) [13], for modelling and analysis of complex
real-time systems. SHE uses a UML profile to formu-
late the concepts needed for the realisation of the re-
quested functionality of a system. POOSL formalises
the behaviour specified in informal UML diagrams,
establishing a formal model.

POOSL contains a set of powerful primitives to
formally describe concurrency, probabilistic distribu-
tion, communication, timing and functional features
of a system into a single executable model. Its for-
mal semantics is based on timed probabilistic labelled
transition systems [14]. This mathematical structure
guarantees a unique and unambiguous interpretation
of POOSL models. Hence, POOSL is suitable for
specification and, subsequently, verification of cor-
rectness and evaluation of performance for real-time
systems.

The SHE method is accompanied by two simu-
lation tools, SHESim and Rotalumis. SHESim is a
graphical environment intended for incremental spec-
ification, modification and validation of POOSL mod-
els. Rotalumis is a high-speed simulator, enabling
fast evaluation of system properties. Compared with
SHESim, Rotalumis improves the simulation speed
by a factor of 100 by compiling the model into an
intermediate format before executing it. Both tools
have been proved to correctly simulate a model with
respect to the formal semantics of the language ([15]).

3.2 Application Model

The application part of a system can be modelled
in terms of tasks that communicate with each other
in order to accomplish the system desired behaviour.
The tasks are characterised by their parameters, the
events they are triggered by and the tasks that they
trigger in their turn. The parameters of a task are:

o Computation load: represents the number of in-
structions needed to perform the functionality of
the task.

o Task identifier: a unique identifier in the appli-
cation task graph, which can be a name or a num-
ber, and that is used to keep track of the order in
which tasks are executed.

o Priority / relative deadline: is used for schedul-
ing tasks according to the policy chosen for the
resource.

An example of a POOSL model for a task is given
in fig. 5. HANDLEKEYPRESS task (visualised in the
UML diagram from fig. 2) is modelled as a recursive
process class method which enables the task to re-
ceive any incoming event from the knob that is turned
by the user. Each event is handled by the EXECUTE
method, which sends (as a message) a request for ex-
ecution to the platform. The parameters of the task

are also sent along with the message. When the re-
quest is accomplished, the task is returned a message
executed and it then triggers another task in the
system by sending a message trigger.

HANDLEKEYPRESS()() | E : Event |
in?event(E);
par
HANDLEKEYPRESS()()
and
EXECUTE()();
out!trigger
rap.

0NN AW~

9 EXECUTE()() | Task : Integer |
10 platform!execute(Taskld, ComputationLoad, Priority);
11 platform?executed(Task | Task = TaskId).

Figure 5: HANDLEKEYPRESS task model

Besides the tasks that accomplish the required
functionality of the system, we have also taken into
account the model of the buffers for the communi-
cation between tasks that are mapped onto differ-
ent resources. Buffers are considered “communica-
tion tasks” that are “executed” by communication re-
sources, like buses. Their execution requests are in
fact message transfer requests. The model of a buffer
is similar with the task described in fig. 5, except for
the meaning of the load, which in this case represents
the size of the message, and the lack of the priority
parameter.

3.3 Platform Model

The platform on which the software runs is a col-
lection of resources that perform the computations
and the communication required by the application.
As resources are shared by several tasks, a scheduler
needs to be modelled for the arbitration (based on a
certain scheduling policy) of the access. To model
a resource with priority-based scheduling policy, we
have used the specification in fig. 6. CPU is the initial-
isation method of a process class modelling a compu-
tation resource. It is recursive which makes the han-
dling of new computation requests possible when the
resource is idle. After receiving a task, which has
a specific priority and computation load, the EXE-
CUTETASK method is called. The execution of the
computation is modelled in line 8 by the delay state-
ment. While the computation is being performed, it
can be preempted by a request coming from another
task with a higher priority. This is modelled by the
interrupt statement. The EXECUTETASK method is
called again recursively to handle the higher priority
task. When the computation associated to a task is fin-
ished, EXECUTETASK returns a task!executed
message to the corresponding task. Once the recur-
siveness of EXECUTETASK is finished, the resource
enters the idle mode and method CPU is called again.

The model presented in fig. 6 can easily be
changed to use another scheduling policy. For exam-

CrUO0

task?execute(Task, ComputationLoad, Priority);
EXECUTETASK(Task, ComputationLoad, Priority)();
Cpru()0).

S W =

EXECUTETASK(ServingTask : Integer,
ServingLoad : Real, ServingPriority : Integer)()
| ReqTask, ReqPriority : Integer, ReqLoad : Real |
interrupt
9 delay ServingLoad / MIPS
10 with
11 (task?execute(ReqTask, ReqLoad,
12 ReqPriority | ReqPriority > ServingPriority);
12 EXECUTETASK(ReqTask, ReqLoad, ReqPriority)());
13 task!executed(ServingTask).

[BN Ie V)]

Figure 6: CPU model

ple, to model the earliest deadline first algorithm, it is
enough to replace lines 11 and 12 with the ones given
in fig. 7.

11 task?execute(ReqTask, ReqLoad,
12 RegDeadline | ReqDeadline > ServingDeadline);

Figure 7: Change of CPU for EDF model

For the communication resource, we have mod-
elled a point-to-point communication bus, which was
needed in the case study, shown in fig. 8. This type
of resource has a First Come First Serve (FCFS)
scheduling policy. Method BUS receives requests
from the buffers that interconnect tasks at the ap-
plication level. TRANSFERMSG method models the
transfer of the message through the communication
resource by the delay statement. The transfer time de-
pends on the size of the message and the bandwidth
of the resource.

BUs()() | Messageld, MessageSize : Integer |
msg?transfer(Messageld, MessageSize);
TRANSFERMSG(MessageSize)();

msg!transferred(Messageld);
BUS(().

(O N O N

=)}

TRANSFERMSG(MessageSize : Integer)()
delay MessageSize / Bandwidth.

-

Figure 8: BUS model

3.4 Environment Model

To reason properly about the properties of an em-
bedded system, its whole behaviour should be mod-
elled realistically, including the environment that trig-
gers the events. For this purpose, a discrete-event
approximation of the continuous-time behaviour of
the physical components can be modelled in terms
of event streams that occur according to some arrival
patterns.

As an example of such an arrival pattern, fig. 10 il-
lustrates the model of a periodic event stream with jit-
ter. Such an arrival pattern is usually met in real-time
systems, although most of the analysis techniques as-
sume in such situation perfect periodicity of events.

. SHESim System Level Editor

Elle Class Definitions Scenarios Options Interaction Diagrams About

Knob

HandlekeyPress
outt

CompResOUtQ

ch1
msg of ch1

5

AS | 1RO EEF

HandleTMC

ch2
Radio

5 c1
Pin~ outf 7
msg of gh3 msg of

AdjustVolume

in
ch4

Out1

Out2!
CompRes

ch

In,
msg of|chf€

L EX

C2
out

msg

fin
h1

Databasel ookup|

o
msg of ch8

I Spearer
2

1C4
In Cout
o3 UgdaleScr
msg fc|h11
n

C5
In__out! in2

0
CompRes

Out

DecodeTMC

f qh12$

msg oflch14

een

in3 CompRes

Out1
Out2!

hin Display
chs

oul In
msg of chR

Out—efr
msg

B
5o
]
3.8
o
g

CompRes

716
msg of

h

In
16

Oul
CompRes

msg of chS

chl
msg 0

M1
chiMI

ChNAV

msg of [chNAV

task

PIMMI

task

P2NAY

msg

BUS
f chBUS

chRAD
msg of

hRAD

bus
Bus1

task

P3RAD

e e A e |

Figure 9: POOSL model of the system

The parameters of the model are the period T of the
event occurrence and the maximum value of the jitter
J. The event is modelled to occur anywhere between
T-J and T+J. For this, jitter is a data object of uniform
distribution type whose limits are 0 and J/2. At every
period, a new sample j is generated from this distri-
bution and 2 * j units of time pass by before the event
produced arrives at the application.

1 INITOO

2 jitter = new(Distribution)of Type(Uniform);
3 jitter withParameters(0, J/2);
4 KNOBEVENT()().

5 KNOBEVENT()()

6 par

7 delay T - J;

8 ji=2 *jitter sample();

9 delay j;

10 outlevent(E)

11 and

12 delay T;

13 KNOBEVENT()()

14 rap.

Figure 10: Model of a periodic event with jitter

3.5 Mapping Model

For the mapping stage of the Y-chart in fig. 4,
the proposed modelling approach uses communica-
tion channels provided by POOSL to map the appli-
cation components to the resource components. A
message channel is created between a task and the re-

source on which it is mapped, as shown in fig. 11.
Moreover, if there is communication between tasks
mapped onto different CPUs, then the buffer in be-
tween is mapped onto the communication link.

BUFFER

|
CpPU1 BUS CPU2

Figure 11: Mapping stage of Y-chart

By using the modelling approach presented above,
the complete model of the in-car navigation system
was built and a snapshot from the graphical tool is
presented in fig. 9.

4 Performance Analysis of the System

A model built according to the Y-chart scheme al-
lows analysis of different application-platform con-
figurations, as all the components modelled are pa-
rameterisable and thus easy to be changed. To evalu-
ate a certain configuration, during model simulation,
the scheduler reports if there are tasks that miss their
deadlines. Furthermore, based on the POOSL seman-
tics, it can be detected if there is a deadlock in the
system. If all the deadlines are met and there is no
deadlock during the simulation, then the correspond-
ing platform is a good candidate to meet all the sys-
tem requirements, although there is no guarantee for

Table 1: Timeliness requirements of the system

Scenario Deadline Task Load f
name [ms] name [instructions] | [1/s]
ChangeVolume 200 HandleKeyPress 1ES 32
AdjustVolume 1ES 32
UpdateScreen 5ES 32
ChangeAddr 200 HandleKeyPress 1ES 1
Databasel.ookup 5E6 1
UpdateScreen 5ES 1
HandleTMC 1000 ReceiveTMC 1E6 1/3
DecodeTMC 5E6 1/3
UpdateScreen 5ES 1/30

that as simulation completeness cannot be claimed.
However, for soft real-time systems, it is allowed that
a certain percentage of deadlines are missed. There-
fore, in this case, it is especially useful to keep track
of the rate of deadlines missed and check if the under-
lying platform meets the requirements.

In the following subsections, both worst case and
average case evaluation of the in-car navigation sys-
tem are presented.

4.1 Worst Case Analysis

The UML diagrams specifying the case study, as
the one shown in fig. 2, provide the worst case values
of the load (number of instructions) imposed by tasks
on the CPUs. They also specify what is the rate of
task activations (how often the events are triggered)
which depends on the scenario in which they appear.
Based on these activation rates, priorities were as-
signed to tasks according to the rate monotonic ap-
proach. The timing requirements of the system are
also specified in the UML diagrams as end-to-end
deadlines for each scenario. The loads of the tasks,
the frequencies (f) of activations! per scenario and the
timing requirements are given in table 1.

By simulating? the behaviour of the system, using
each of the proposed architectures in fig. 3, the end-
to-end delays were monitored. Fig. 12 shows, as an
illustration, the maximum end-to-end delay obtained
for HandleTMC scenario when running alone on each
of the proposed platforms (from A to E).

The most interesting situations to monitor were the
ones in which two scenarios are running in parallel as
such a situation can lead to a larger value for the end-
to-end delay. In our simulation, we have observed that
all the deadlines are met on all the architectures. As

ITasks are triggered by the events in the environment as knob
turning or messages from the network. In this analysis, the events
are assumed to arrive periodic, so the value of the maximum jitter
J in the environmental model is 0.

2Note that, the simulation was run with the fast execution en-
gine Rotalumis; thus, a few minutes of system simulation represent
several hours of runtime behaviour. The simulation was run until
an accuracy of 99% of the results was reached.

an example, the results obtained for different combi-
nations of scenarios on architecture A are presented in
table 2. Next to them the results obtained using MPA
and UPPAAL techniques are also provided. Architec-
ture A was chosen for further discussion because it
was the one chosen for deeper analysis by both tech-
niques.

070

0.40 + |

0.30 1

0.20 1

0.10 +

0.00

Figure 12: Maximum end-to-end delay for scenario
HandleTMC

MPA is an analysis technique which finds hard
upper bounds, not necessarily the actual worst case
reached by the model. This explains the larger val-
ues that are obtained by applying this method. On
the other hand, the results computed by UPPAAL are
exact values of the worst case end-to-end delay. It is
interesting to observe that our results are very close to
UPPAAL (~1% difference which also represents the
accuracy of the results), except for HandleTMC sce-
nario for which the difference is 7%. For this situation
we suspect a miss-match between the corresponding
models and this aspect is still under investigation.

Besides keeping track of the end-to-end delays,
during simulation, we have also monitored the re-
sources utilisation. For architecture A, the obtained
results are presented in table 3. Based on the amount
of idle time of the CPUs and on the fact that the
worst case values of the delays are much smaller than
the specified deadlines, we concluded that the per-
formance of the underlying architecture could be re-

Table 2: Architecture A worst case end-to-end delays

Measured Other active POOSL MPA UPPAAL
scenario scenario [ms] [ms] [ms]
ChangeVolume | HandleTMC 41.771 | 42.2424 | 41.796
HandleTMC | ChangeVolume | 357.81 | 390.086 | 381.632
ChangeAddr HandleTMC 78.89 84.066 79.075
HandleTMC ChangeAddr 171.77 | 265.849 | 172.106

Table 3: Resources utilisations in architecture A

Scenario Scenario Scenario MMI | NAV | RAD | Bus
ChangeVolume | ChangeAddr | HandleTMC | [%] [%] [%] | [%]
YES NO NO 87 0 30 3
NO YES NO 3 5 0 1
NO NO YES 1 2 4 1
YES NO YES 88 2 33 4
NO YES YES 4 6 2 2

duced in order to have a platform with less cost and
energy consumption.

4.2 Average Case Analysis

For a more appropriate dimensioning of the sys-
tem, we have modelled more realistically the be-
haviour of the in-car navigation system, in which we
have assumed that the tasks loads vary according to a
uniform distribution. In order to do this, we modelled
the ComputationLoad parameter of a task as a data
object of a uniform distribution type, from which, at
every task invocation, the current load of the task is
obtained. As the UML diagrams provide only the
worst case value of the load of each task, based on
previous knowledge about similar systems, we have
assumed that the actual load varies between 75% and
100% of the value provided. The limits of the load
variation for each task is given in table 4. However,
such a model involving probabilistic distributions is
possible in neither MPA nor UPPAAL. Therefore, the
analysis results obtained could not be compared with
them.

Table 4: Tasks loads limits

By simulating the system under the new circum-
stances, the end-to-end delays were monitored again.
Their values can be graphically plotted as a distri-
bution histogram, showing on the horizontal axis the
values of the end-to-end delay and on the vertical axis
the rate of occurrence of each value. As an example,

fig. 13 shows the distribution histogram of the delay
for the HandleTMC scenario when it runs in paral-
lel with ChangeVolume on architecture A. From such
distribution histograms it can be seen which are the
minimum (best case) and the maximum (worst case)
values for the end-to-end delays. Table 5 shows these
values for all the combinations of scenarios running
on architecture A. Moreover, from distribution his-
tograms it can be deduced how often the maximum
value of the end-to-end delay occurs.

d delay HandleTMC - Chang
T T T

T T
_ — TMCVOL data

0.0181 5

0.016 o

0014 L

00121

Density

0.008

0.006-

0.002

180 200 220 0 320 340

240 260 280 E
End-to-end delay HandleTMC

Task name Lower limit | Upper limit Figure 13: HandleTMC histogram on A
HandleKeyPress 7.5E4 1E5 In our simulations, we have observed that the re-
AdjustVolume 7.5E4 1E5 quirements are met for all the scenarios on all the pro-
UpdateScreen 3.75E5 5E5 posed architectures and that the maximum delays are
Databasel.ookup 3.75E6 SE6 much smaller than the deadlines. Moreover, as the
HandleTMC 7.5E5 1E6 in-car navigation is a soft real-time system, it allows
DecodeTMC 3.75E6 5E6 a certain rate of deadline misses, which is 5%. Based

on this information and on the analysis of the idle time
of the resources, in order to reduce cost, we decided to
choose slower CPU cores for NAV and RAD on archi-
tecture A as they are not heavily used. For NAV, we
have chosen a 40MIPS and for RAD a SMIPS. The
end-to-end delays obtained with this new configura-
tion are shown in table 6. From the confidence inter-

vals calculated during simulation (see [7] for explana-
tions), we observed that the rate of deadline misses is
within 5%, thereby fulfilling the requirements.

Table 5: End-to-end delays on architecture A

Measured Active Minimum | Maximum
scenario scenario delay (ms) | delay (ms)
ChangeVolume HandleTMC 28.17 47.82
HandleTMC ChangeVolume 180.9 353.51
ChangeAddr HandleTMC 61.08 127.51
HandleTMC ChangeAddr 132.59 204.06

In this way, we have found a better dimensioning
of the system than what was found using both MPA
and UPPAAL. Using the proposed analysis approach,
the performance of two CPUs of the platform found
suitable by the other techniques could be reduced with
65% for NAV and with 55% for RAD.

Table 6: End-to-end delays on the improved A

Measured Active Minimum | Maximum
scenario scenario delay [ms] | delay [ms]
ChangeVolume HandleTMC 42.84 58.48
HandleTMC ChangeVolume 654.18 1056.06
ChangeAddr HandleTMC 115.22 270.8
HandleTMC ChangeAddr 298.27 496.03

5 Conclusions

In this paper, we have shown how POOSL mod-
elling language can be used to build models suit-
able for soft real-time system. Based on simula-
tions, we show how such a model can be analysed
for worst case. For sanity-check, we also posi-
tion our results against the results obtained for the
same case study using two other performance anal-
ysis techniques which are based on analytical compu-
tations. The comparison confirms the accuracy of our
simulation-based estimations.

Furthermore, we present how models can incorpo-
rate knowledge about the varying timing behaviour of
the system using probabilistic distributions in order
to analyse the system for average behaviour. Based
on that, a better dimensioning of the system is possi-
ble. We show that the performance of the architecture
found by the analytical techniques as suitable can be
reduced with more than 50%, thus reducing cost.

As future work, we aim at applying this approach
to larger and more complex systems in order to
improve it and extend it.

Acknowledgments. The authors would like to thank
Marcel Verhoef for his support and valuable com-
ments to this work.

References

[1] Simonetta Balsamo, Antinisca Di Marco, Paola
Inverardi, and Marta Simeoni. Model-based per-
formance prediction in software development:
A survey. IEEE Transactions on Software En-
gineering, 30(5):295-310, 2004.

[2] Matthias Gries. Methods for evaluating and cov-
ering the design space during early design devel-
opment. Integration, 38(2):131-183, 2004.

[3] Ernesto Wandeler, Lothar Thiele, Marcel Ver-
hoef, and Paul Lieverse. System architecture
evaluation using Modular Performance Analy-
sis - A case study. Accepted for publication in
the STTT Journal.

[4] Gerd Behrmann, Alexandre David, and
Kim Guldstrand Larsen. A Tutorial on
UPPAAL. In Proc. of SFM, 2004.

[5] Paul Lieverse, Pieter van der Wolf, Kees Vissers,
and Ed Deprettere. A methodology for archi-
tecture exploration of heterogeneous signal pro-
cessing systems. VLSI Signal Processing Sys-
tems, 29(3):197-207, 2001.

[6] Andy D. Pimentel, Louis O. Hertzberger, Paul
Lieverse, Pieter van der Wolf, and Ed F. Depret-
tere. Exploring embedded-systems architectures
with Artemis. Computer, 34(11):57-63, 2001.

[7] Bart D. Theelen. Performance Modelling for
System-Level Design. PhD thesis, Eindhoven
University of Technology, 2004.

[8] Samarjit Chakraborty, Simon Kunzli, and
Lothar Thiele. A general framework for
analysing system properties in platform-based
embedded system designs. In Proc. of DATE,
2003.

[9] Rajeev Alur and David L. Dill. A theory of
timed automata. Theoretical Computer Science,
126(2), April 1994.

[10] M. Hendriks and M. Verhoef. Timed automata
based analysis of embedded system architec-
tures. In Proc. of WPDRTS, 2006.

[11] Bart Kienhuis, Ed Deprettere, Kees Vissers, and
Pieter van der Wolf. An approach for quantita-
tive analysis of application-specific dataflow ar-
chitectures. In Proc. of the IEEE ASAP, 1997.

[12] Piet H.A. van der Putten and Jeroen P.M. Voeten.
Specification of Reactive Hardware/Software
Systems. PhD thesis, Eindhoven University of
Technology, 1997.

[13] POOSL. http://www.es.ele.tue.nl/poosl.

[14] Jeroen Voeten. Performance evaluation with
temporal rewards. Perform. Eval., 50(2/3):189—
218, 2002.

[15] Marc G.W. Geilen. Formal Techniques for Ver-
ification of Complex Real-Time Systems. PhD
thesis, Eindhoven University of Technology,
2002.

