A Brief Introduction to OpenMP

Yifan He
09-12-2010

Why Multi-core?

Single core: maximize clock frequency,
& more ILP support, etc.?

Additional transistors

afforded by Moore's Law

* Problems of Single Core:
— Power/Heat Dissipation issues (Frequency Wall)
— Instruction-Level-Parallelism (ILP Wall)
— Memory Wall

Why Multi-core?

afforded by Moore's Law : : .
Multiple cores on a single silicon, and

processing simultaneously

Additional transistors :

Performance scaling through parallel processing of Multi-Core!

How to migrate the single-core code to the
multi-core processor conveniently?

Outlines

About OpenMP

“Hello World” example
OpenMP programming model
Step-by-step demo
Application for the assighment

Why OpenMP?

e What we would like to have:

v' Automatic parallelization of sequential code
v" No additional parallelization effort for development,

maintenance, etc.

OpenMP as a programming interface:

» Compiler directives #pragma omp parallel
» Library functions omp_get _num_threads ()

» Environment variables OMP_NUM_THREADS = 4

“Hello World”

#include “omp.h”

void main()

{

Compiler Directive

/

#pragma omp parallel

{

printf(“ hello world \n”);

S gcc hello_world.c -o hello_world
S ./hello_world

hello world

Environment Variable

.

$ export OMP_NUM_THREADS=4

S gcc -fopenmp hello_world.c
-0 hello_world_omp

S ./hello_world_omp
hello world
hello world
hello world

hello world

Execution Model

Fork and Join Model
Master
Thread

) Worker
Parallel regmn* * * * i Threads

Worker
Parallel region * * * * * Threads

Execution Model

#include “omp.h”

void main()
{ Master thread executes serial code
' Master thread encounters
#pragma omp parallel ~ -7----7--~ parallel directive
{ Master and slave threads
printf(” hello world \n"); concurrently execute
! ' ,’ ' parallel block
} YT T T T T T Implicit barrier, wait for all
thread to finish

' Master thread resumes serial code

OpenMP Memory Model

Step-by-Step Demo: calculate 1T

static long num steps = 100000000;
double step;

vold main ()

1

f‘r
x
+

-~

=

=
<
]

—

=

L

int i;
double x, pi, sum = 0.0;

step = 1.0/ (double) num steps; _
— Mathematlcally,
for (1 = 1; 1 <= num steps; i++) {
x = (1 - 0.5) * st “5; _[
sum = sum + 4.0/ (1 + X * x); Cl+—X)
} num _ steps
T~ Y. F(X)*Ax
k i=0

pi = step * sum;
printf ("\n pi with %d steps is %f \n", num steps, pi);

Processing
S./pi time
pi=3.141593, in 0.953144 Sec. ‘

OpenMP: using SPMD pattern

static long num steps = 100000000;
for (1 = 1; 1 <= num steps; 1i++) {
x = (1 - 0.5) * st ep,
sum = sum + 4.0/(1L + x * x);

Total Workload (num_steps = 100,000,000)

1|2/3|4|5|6|7|8| - Single Thread
—

Total Workload (num_steps = 100,000,000)

I I Multi Threads I

I thread 1 D thread 2 D thread 3 [thread 4

OpenMP: using SPMD pattern

static long num steps = 100000000;

double partial sum[numthreads];

fpragma omp parallel
{

//# numthreads =4

$ export OMP_NUM_THREADS=4

int i;
double x; S ./pi_spmd_simple
int 1d = omp_get_thread num(); pi = 3.141593, in 4.412447 S
partial sum[id] = 0.0;
for (1 = id; 1 < num steps; 1 += numthreads) ({
X = (i + 0.5) * step:

partial sum[id] =

}
}

partial sum([id]

+ 4.0/(1.0 + x * x);

full sum = 0.0;
for(1 = 0; 1 < numthreads;

full sum += partial

i++)
sum[1];

Processing Time:
from 0.953144 Sec. (Single thread)
to 4.412447 Sec. (4 threads)!!!

Why?

False-Sharing

d@HbLE(EEEE?al_sum[numthreads];

partial sum[id] = 0.0;
for (1 = id; 1 < num steps; 1 += numthreads) ({
X = (i + 0.5) * step;

partial sum[id] = partial sum[id] + 4.0/(1.0

+ X * %)y

}

Each thread has its own partial suml[id] (id = 1 for thread 1, ..., id = 4 for thread 4).

However, since it’s defined as an array, the partial sums happen to be in consecutive
memory locations, and be loaded into the same cache line.

Remove False-Sharing

static long num steps = 100000000; //#numthreads=4

— #pragma omp parallel

{ int i S ./pi_spmd_no_false_sharing
double x; pi =3.141593, in 0.253590 Sec.
int id = omp get thread num();
double partial sum = 0.0;
for (1 = 1id; 1 < num steps; 1 += numthreads) {

X = (1 + 0.5) * step;

["‘:

partial sum = partial sum + £.0/(1.0 + x * x);

}

fpragma omp critical —F Compiler Directive, indicate that it’s a critical
full sum += partial sum; region. Check the learning material for detail

OpenMP: loop

N aTaNaToTatataras
-
4 Iul k_.l Iul k_-l Iul I-_,' Iul I-_,' r

static long num steps =

#pragma omp parallel
{

//# numthreads =4

#pragma omp for private{x) reduction (+:sum)

for(1 = 1; i <= num steps; i++
X = (1 - 0.5) * step;
sum = sum + 4.0/(1L.0 + x * x);
}

reduction: Check the learning material for detail

) {

S ./pi_loop
pi =3.141593, in 0.245648 S

What We Learned

e Parallelism does not always guarantee performance
Improvement

e Assess data dependences is the difficult part

Other Important Contents

Variable Type: shard, private, firstprivate, etc.
Synchronization: atomic, ordered, barrier, etc.
Scheduling: static, dynamic, guided

OpenMP Release History

A single
specification
1998 2002 for Fortran, C

and C++
OpenMP OpenMP
C/C++ 1.0 C/C++ 2.0 N\ 2000 2008
OpenMP OpenMP
OpenMP OpenMP OpenMP
ortran 1.0 ortran 1. Fortran 2.0

2.5 3.0

tasking,
1997 1999 2000 other new

features

Is de-facto standard!

Assignment: Application

 From industrial OLED-Printing application

Organic-Light-Emitting-Diode (OLED)
substrate localization

OLED

Detected
Centers

Assignment: Application

input

OTSU
frame . 2 || Toes
— Histogram CHI/CIA Max. Op
Find-Rough-Center

! . 1 Row/Column Rough Center & ! -
> Erosion ‘ o : e
| Projection Bonding Box |
| - Detected

** ' Centers

Binarization

A

Assignment Website

e sites.google.com/site/omp5md00

Refernces:

[1] Tim Mattson and Larry Meadows, “Hands-On Introduction to OpenMP”
[2] Ruud van der Pas, “An Overview of OpenMP”, 2009

[3] Clemens Grelck, “Low-Level Multi-Core Programming with OpenMP”, 2010

	A Brief Introduction to OpenMP
	Why Multi-core?
	Why Multi-core?
	Outlines
	Why OpenMP?
	“Hello World”
	Execution Model
	Execution Model
	OpenMP Memory Model
	Step-by-Step Demo: calculate π
	OpenMP: using SPMD pattern
	OpenMP: using SPMD pattern
	False-Sharing
	Remove False-Sharing
	OpenMP: loop
	What We Learned
	Other Important Contents
	OpenMP Release History
	Assignment: Application
	Assignment: Application
	Assignment Website
	Refernces:

