
DebuggingDistrib uted-Shared-Memory Communication
at Multiple Granularities in Networks on Chip

BartVermeulen1, KeesGoossens1;2, SiddharthUmrani2
1 Research,NXP Semiconductors,TheNetherlands,f Bart.Vermeulen,Kees.Goossensg@nxp.com

2 ComputerEngineering,Delft Universityof Technology, TheNetherlands

Abstract

We presenta methodology to debug a SOCby concen-
tratingonits communication.Our extendedcommunication
modelincludesa) multiplesignalgroupsper interfacepro-
tocol at each IP port, b) the handshakesper signal group
(e.g. for command),andc) thehandshakeswithin a signal
group(e.g. for write andreaddataelements).Asa result,
our debug methodology is the �r st to offer debug control
at threecommunicationgranularities: individual dataele-
mentsin a message, messages(i.e. requestsor responses),
andentire transactions.

Communicationto distributedshared memoriesis sup-
ported in networks on chip (NOC) by transparently
(de)multiplexing different master-slavechannelsbasedon
the memoryaddress,also called narrowcast. In this pa-
per, we extendpreviouswork on NOC debug that allowed
per-connectiondebug (i.e. a masterwithoutdifferentiating
betweenits slaves)to also supportper-channel (i.e. per
master-slavepair) debugging, alsofor narrowcastconnec-
tions. Thisenablesessential�ne-graineddebug control for
multi-processorSOCsthat usedistributed-shared-memory
communication.

The debug infrastructure consistsof hardware compo-
nents,anda software API andlibrary. We de�ne thehard-
ware infrastructure and the required changes to a NOC.
Our architecture cleanlyseparatesthemonitoringanddis-
tribution of eventsfromhowthey are interpretedandused,
in termsof hardware andprogramming. We de�ne a high-
level software API for run-time user control. The debug
methodology offers run-time programmablebreakpoints,
stopping, continuing, and single-steppingof distributed-
sharedmemorycommunicationat threegranularities,at the
costof 2.5%NOCareaincreaseandnospeedpenalty.

1. Intr oduction

With the emergenceof complex SOCscomesthe unin-
tentionalbut inevitable slip of somedesignerrors(located

in hardware or software) to the product bring-up phase.
Finding theseerrorsin a timely andcost-effective manner
is increasinglyimportantto ensurethat theproductcanbe
releasedto themarketon time. Traditionallythetaskof de-
bugginganembeddedsystemhasbeenmadeeasierthrough
theup-frontinclusionof debug supportfunctionsin thede-
sign,anactivity known asDesign-for-Debug(DfD). Debug
supportfunctionsincludedin SOCsacrossthe industryto-
day [11] fall into two categories: real-timetraceandrun-
stopcontrol. To enablereal-timetrace,key internalsignals
arebroughtout, in real-time,ontochip pins. Theability to
observethesesignalsis agreatadvantageduringdebugging.

Run-stopcontrol useson-chipsupportto stopthe func-
tional operationof the chip whena programmablecondi-
tion occurs. Traditionally the responseto this occurrence
is to either have the processorsin the systemjump to an
exceptionhandler, andwait to becontactedby anexternal
debuggertool, or by gating all functionalclocks, freezing
the completesystemstate. Afterwards, the external de-
buggersoftware can switch the systemto a debug mode,
in which the systemstatecanbe examined,andwherere-
quired,modi�ed, beforefunctionalexecutionis resumedor
restarted[12]. Softwaredebuggingtakesplaceat theappli-
cationsourcecodelevel. Hardwaredebuggingtakesplace
at the IP clock cycle level. A singlesourcecodeline can
take many clock cyclesto execute,makingthe systemde-
bug processvery time consuming,asthereareno interme-
diatelevelson which debuggingcantake placeaswell. In
addition,debuggingat theclock cycle level is known to be
very dif�cult, especiallyin SOCswith multiple clock do-
mains,and in the presenceof non-deterministicbehavior
andenvironmentalconditions[5, 4].

In thispaper, wethereforeestablishnew intermediatede-
bugginglevels,addresscommunicationbasedondistributed
sharedmemoriesfor multi-processorSOCs,implementsin-
gle stepping,and de�ne and implementa high-level user
API for run-timedebug. For this we focuson the on-chip
communicationarchitecture,and extend the conceptsand
implementationsexploredin [8] and[18].

Key contributionsof thispaperare:

� We introducean extendedcommunicationmodelthat
includesmultiple protocolsignalgroups,handshaking
pergroup(e.g. for thecommandgroup)andwithin a
group(e.g.write andreaddataelements).

� This allows us to de�ne intermediatelevels for ef-
fective run-stopdebuggingof embeddedsystems,fo-
cussingon the on-chipcommunication,insteadof on
the on-chip computation. Theseincreasinglycoarse
levelsare: individual dataelements(of write andread
data),requestandresponsemessages,andentiretrans-
actions.The�rst level is new.

� NOCsimplementdistributed-shared-memorycommu-
nicationby demultiplexing requestsfrom a masterto
theappropriateslave, andmultiplexing theresponses,
calledanarrowcastconnection[16]. Priorwork [8, 18]
allowed debuggingof connectionswith a masterand
multiple slaves,suchasa narrowcastconnection,only
in a limited manner. This paperde�nes and imple-
mentsper-channel,i.e. per master-slave pair, debug
support.Thissigni�cantly increasesthe�e xibility and
applicability of the debug methodology, which is re-
quiredby SOCswith multipleprocessorsthatcommu-
nicatevia distributedsharedmemories.

� We show new detailsof the event distribution mech-
anism,including �nite statemachines(FSM) andthe
operationof stopeventdistribution.

� Singlestepping,i.e. repeatedstoppingandcontinuing,
is a key featureof a debug methodology. Although
prior work introducedthe concept,it did not imple-
ment it. In particular, single steppingat any of the
threedebuglevelsintroducedhere,while guaranteeing
thatno eventsaremissedrequiresadditionalhardware
supportto atomicallycontinueandstop. This is more
complex thantheseparatestopandcontinuefunctions,
describedby earlierwork.

� The new features(threedebug levels, narrowcastde-
bug, and single-stepping)all require changesto the
network interface(NI) shell FSMs. We show an im-
plementationfor aparticularprotocol(DTL [14]), and
a generalrecipeto modify NI Shell FSMs for other
protocols.

� While prior work de�ned the basicstepson how to
usea debug infrastructure,this papergivesbothmore
low-level detailsof the testpoint registers(TPR),and
de�nes a genericdebug interface port and software
API to abstractaway from thebasic,implementation-
speci�c operationsto amoregenericanduser-friendly
interface.

In our exampleswe usea network on chip (NOC), but our
conceptsandimplementationcanbeappliedequallywell to
bus-basedSOCarchitectures.

The remainderof this paper is organizedas follows.
Section2 discussestheinterconnectionandcommunication

Figure 1. Example signal groups and signals of a
DTL por t.

models. In Section3 we describea typical sessionfor de-
buggingasystemusingacommunication-centricapproach,
andderive debug controlrequirements.Section4 describes
how thesecanbe implementedin a NOC andmadeacces-
sible via a genericdebug interface. Section5 containsa
descriptionof thehigh-level softwareAPI we developedto
control the SOC communicationat the systemlevel with
differentgranularitiesof stoppingandsinglestepping. In
Section6 we presentthe resultsof experimentswe con-
ducted,includingsilicon areacost,andimpacton themax-
imum functionalnetwork frequency. We concludein Sec-
tion 7.

2. Inter connection& Communication Models

Communication Model

To enabletheirre-use,IPscommunicateontheirportsusing
standardizedtransaction-basedprotocols,suchasDTL [14],
AXI [1], andOCP[13]. A transactionis initiatedby amas-
ter port on an IP, andconsistsof a requestmessagefrom
masterto slave. Theexecutionof a requestmessageby the
slavecangenerateanoptionalresponsemessage.

A requestmessageis encodedas two or more signal
groups: the commandgroupandthe write-datagroup. A
responsemessageis encodedasoneor moresignalgroups,
e.g.theread-datagroup.Successivedatawordsof thewrite
and readdatagroupsare called message(data)elements.
Figure1 shows someof the signalgroupsof DTL, which
we useas a running examplein Sections4.3 (converting
transactionsto packets)and6 (experimentalresults).

A valid/accepthandshake is usedto transferanelement
per signal group. For example, the elementof the com-
mandgroupcomprisesthecommand(read/write),address,
andperhapssome�ags. For thecommandanddatagroups

Figure 2. Narrowcast connection, implementing
distrib uted shared memor y comm unication be-
tween one master and multiple slaves.

the initiator producesdataon the signalgroupandasserts
thegroup's valid signal.Thetargetthenconsumesthedata
andindicatesthisby assertingthegroup'sacceptsignal.For
theresponsemessagetherole of initiator andtargetarere-
versed.

We distinguishthreeconsistentgranularitiesof commu-
nication.Startingwith thesmallest,theseare:elements(co-
incidingwith signalgrouphandshakes),messages(requests
or responses,consistingof oneor moreelementson oneor
more signal groups),and transactions(consistingof a re-
questmessageandoptionalresponsemessage).Thedebug
infrastructureintroducedin Section4 allows thedebugging
of the communicationof a SOC to take placeat eachof
theselevels,dependingonhow it is con�gured.

Our canonicalNOC [7] consistsof routersandnetwork
interfaces(NI). A mastercommunicateswith a slave using
two uni-directionalchannels:onefor requestmessagesand
one for responsemessages.Most communicationproto-
cols implementdistributedsharedmemory, wherea master
communicatestransparentlywith multiple slaves. In other
words, the masterusesan addressspacewithout knowing
how it is distributedover the slaves(on-chipandexternal
memories,peripherals,etc.).A mastercommunicatestrans-
parentlywith multipleslavesusingasinglenarrowcastcon-
nection[16], seeFigure2.

NI Ar chitecture

As illustrated in Figure 3, channelsare implementedby
theNI kernel,andconnectionsareimplementedby theNI
shells[16]. After serializingtherequestsignalgroups(“s”
in Figure3), requestsof a singlemasteraredemultiplexed
to multiple slaveson a singleconnectionin the masterNI
shell(“d” in Figure3). Split pipelinedrequestsmaybesent
to differentslaves,andthe responsesmaycomebackwith
differentdelays,hencethemasterNI shell alsointerleaves
theresponsesin thecorrectorder. A slave maybeusedby
differentmasters.Hencetheslave NI shellmultiplexesre-
questsof differentmastersanddemultiplexestheresponses.
The NI Shell FSMs implement the (de)serialization,re-
ordering,andhandshakingfor theparticularprotocolof the

Figure 3. (a) Narrowcast (Multi-Sla ve) Master and
(b) Multi-Master Slave, with their Shells and Ker-
nels.

port. In Section4.3 we describetheseFSMsandhow they
have beenmodi�ed to supportourdebugmethodology.

3. Communication Debug

For run-stoptypedebugging,a debug engineer�rst has
to determineat whatpoint during the functionalexecution
(the so-calledbreakpoint)the internalstateof the embed-
dedsystemneedsto beexamined.Thisdecisionis typically
basedonthepoint in timeatwhichfaultybehavior becomes
visibleon thesystemoutputs,andsettinganinternalbreak-
point prior to thatmoment.For communication-centricde-
bug, several choicesexist for the granularityat which the
systemexecutioncanbestopped,andsubsequentlysingle-
stepped,seeFigure4.

Thecoarsestgranularitythat is usefulfor debuggingthe
on-chipcommunicationis theconnectionlevel. This com-
prisesthe communicationbetweena singlemasterandall
of its slaves. This debug level is suf�cient to determine
whetherthe mastergeneratescorrectreadandwrite trans-
actionsandtheslavesreactin thecorrectway. Thiscorrect-
nesscanbe determinedfor examplethrougha correlation
with abehavioral simulationof thesamesystem.Thishow-
ever doesnot explain why (attributesof) the transactions
on a particularconnectionor from a particularslave arein-
correct. To determinethis, a smallergranularitymay be
required,for exampleat the level of individual slaves(i.e.
channels),messages(i.e. speci�c requestsor responseson

Figure 4. Comm unication Debug Granularity .

Figure 5. Comm unication-centric Debug Session.

a channel),or evenelementswithin a message.If thecom-
municationinfrastructureitself is suspect,debuggingmight
needto take placeat theeven lower, �it level. Finally, the
smallestgranularityat which the executionof the system
can be controlled, and hencestopped,is the clock-cycle
level. Notethatwhenstoppinga systemat a highergranu-
larity thanclockcycles,thestoppingmaynotbeimmediate,
i.e. thesystemmaycontinueto executefor a certainperiod
of time after the breakpointwas detected,for exampleto
completeanactive messageor transaction.

Basedon theseadditional levels of granularity, a new
�o w for a communication-centricdebug sessioncanbede-
rived.It is shown in Figure5. After programmingthebreak-
point, theengineercanchooseto functionally resettheap-
plication,to startits executionfrom a well-de�ned start-up
state,or to let thesystemcontinueasis. Theexternaldebug-
gersoftwarethencontinuouslycheckstheexecutionstateof
the system,to determinewhetherthe programmedbreak-
point hasalreadybeenhit or not. Oncethebreakpointhas
beenhit, the debuggersoftwarealsohasto checkwhether
the systemhasreacheda quiescentstate,for exampleby
polling the stateof the communicationqueuesin the NI
shells.Especiallywith thetransactiongranularity, thetime

betweenthebreakpointhit andthe systemcommunication
reachinga quiescentstatemaytake a long time whenlarge
transactionsareused.

Either the systemreachesa quiescentstateby itself, or
theuserhasto forcethesubsequentswitchto debug mode.
Oncein debug mode,thedebug engineerhasaccessto the
contentsof all internalregistersandmemories,via for ex-
amplethemanufacturingscan-chains[10].

Oncethe system's statehasbeeninspected,it may be
requiredto restartand/orresumethesystem's executionto
stopat anotherpoint (earlieror later) in time for moreac-
curateanalysisof theerror. To this end,thebreakpointcan
be reprogrammed,and the executionof the systemis ei-
ther restarted(by resettingthesystem),or resumed(by re-
enablingsystemexecutioncontrol).

Fromthedescriptionof a communication-centricdebug
session,wederivethefollowing controlrequirementsto de-
bug theon-chipcommunication:

� Reset:Functionallyresetthesystemto (re)starttheex-
ecutionfrom awell-de�ned,start-upstate.

� Internalstop:Stopinitiatedby anon-chipmonitorpro-
grammedto recognizeandtriggeronaconditionor se-
quenceon internalsignals.Whenthesetriggersreach
thenetwork interfaces,they maytakeeffectatdifferent
levelsof granularity(seeFigure4).

� Externalstop: Stopinitiated by the userfrom the ex-
ternaldebuggertool. Due to the latency of thedebug
channelthroughwhich this stopcommandis commu-
nicated,it is often very dif�cult to preciselycontrol
thepointatwhich thesystemactuallystopsexecuting,
hencethepredominantuseof on-chipmonitors.

� Continue:Resumefunctionalexecutionof thesystem.

Thetraditionalsingle-stepoperationalsoexistsfor com-
municationdebug, but is not explicitly mentionedasa re-
quirement,asa single-stepaction is the combinationof a
continueaction with a subsequentstop action at a user-
speci�ed granularity. The breakpointprogrammedcanbe
either an absoluteor a relative breakpoint. For single-
stepping,a relative breakpointis used,where the break-
point is setafterthenext clockcycle,�it, element,message,
or transaction,dependingon theuser's granularityrequire-
ments.

4. On-Chip Debug Infrastructur e

In this sectionwe describetheon-chipdebug infrastruc-
turethatsupportsacommunication-centricdebugsessionas
shown in Figure5 andthatmeetsourcommunicationdebug
requirements.An overview of this infrastructureis shown
in Figure6. Thecomponentsspeci�cally addedto provide
debugsupportareshown in light gray.

Figure 6. DfD Infrastructure for Comm unication
Debug.

Figure 7. (a) Monitor TPR, and (b) NI Shell TPR.

4.1. On-c hip Monitors

Monitors may be added to a systemto observe the
progressof the computation in the master and slaves,
and/orthe communicationin the communicationarchitec-
ture. Communicationmonitorsobserve thedataon the in-
terfacesat the boundariesof the network [17], and/oron
internallinks [2, 3], routers,NIs, etc. Underwhich condi-
tionsa monitorgeneratesa triggercanbeprogrammedvia
theDebugControlInterconnect(DCI). In ourcase,theDCI
consistsof a daisy-chainof, amongothers,Monitor Test
PointRegisters(TPR)(seeFigure6). A Monitor TPRcon-
tains a breakpointcondition, and its enableand triggered
�ags (refer to Figure 7(a)). The TPR chain is accessible
fromanIEEE1149.1TestAccessPort(TAP)usingaspecial
debug instruction(seeSubsection4.5). This accessmech-
anismis identical to the DCBs in [19]. Oncethe monitor
detectstheprogrammedbreakpointconditionon thelink or
interfaceit observes,it assertsits outputfor aslong asthe
breakpointconditionremainstrue.

Figure 8. Example Event Distrib ution Inter connect.

Figure 9. FSM of the Event Distrib ution Inter con-
nect Node .

4.2. Ev ent Distribution In terconnect

The output signals of the monitors are connectedto
theEventDistribution Interconnect(EDI). Thebasiccom-
ponentof the EDI is the EDI node. The EDI node is
parametrizablein the numberof neighboringnodes. The
EDI follows the topologyof the communicationarchitec-
ture(for anexamplewith onemonitor, referto Figure8).

TheFSM diagramof anEDI nodeis shown in Figure9.
Upona functionalreset,this FSM entersthewait state,in
which it waitsfor anincomingeventsignalfrom its nearby
monitoror otherEDI nodes.Whenaneventis detected,the
FSM transitionsto the send state,while it broadcaststhe
event to all its neighboringEDI nodes. In the next clock
cycle, the FSM transitionsto the idle statewhereit de-
activesits outgoingeventsignal,andignoresany incoming
returningeventsignalsfrom its neighbors.This stateis key
to the attenuationof the event signalsin the EDI, asit en-
suresthat eventually the entire EDI will be free of event
signalsagain. In thenext clock cycle, theFSM transitions
to themore? state,whereit checkswhethertheeventinput

Figure 10. Event Distrib ution Example .

signal is still asserted.If so, it will transitionback to the
send state,while broadcastingthe event to all its neigh-
boring EDI nodes. If the event input signal is deasserted,
theFSMtransitionsto theinitial wait state,whereit again
resumesto wait for anincomingeventsignal.

For the exampleEDI shown in Figure8, the concerted
operationis shown in Figure 10. Monitor M0 assertsits
output(monitor stop[0]), therebysignallinganevent
to EDI Node N0. EDI Node N0 transitionsto the send
statewhile assertingits outputsignal,stop out[0] . In
thenext clockcycle,its neighboringEDI nodes,N1 andN3,
take similar action,to signaltheremainingEDI nodes,N2,
and N4 via stop out[1] and stop out[3] respec-
tively. Consequentlyall nodesgothroughthestatesequence
wait ! send ! idle ! more? ! wait . Afterwards,
the completeEDI is in the samestateasit wasbeforethe
eventcamein from themonitor, but in betweenall network
interfaceshave beeninformedof this event,throughtheas-
sertionof thestop out[i] signals.

It takes the EDI a single clock cycle to propagate the
pulsesgeneratedby amonitorthroughaEDI node.Givena
communicationarchitecturethat communicatesdataat the
granularityof �its (3 cyclesfor theÆtherealNOC),thisen-
suresthatany monitoreventalwaysreachesthebordersof
the network aheadof the dataitself. This is a key debug
featurewe exploit, as it allows this datato be kept within
the bordersof the communicationarchitecturefor an (po-
tentially) in�nite amountof time. Theactualprocessingof
this databy the receiving IP can then be analyzedin the
necessarydetail requiredto �nd an error cause,by subse-
quentlysingle-steppingthedelivery operationfor this data
at therequireddebuggranularity.

4.3. Net work In terface Debug Op eration

We illustratethe functionalstatesandtransitionsof the
NI shell FSMs, and then describehow they are modi�ed
for debug. Figure11 shows theFSM of thenarrowcastNI

Figure 11. Modi�ed Network Interface FSM for a
Narrowcast Master .

shell for a DTL masterport asshown in Figure3(a). Other
NI shellFSMsaresimilar. Pleaserefer to Figure1 for the
relevant signalsandgroupsof a DTL port, which we use
in our implementation.Thestatesof theFSM serializeand
handshake theDTL signalgroupsin thecorrectorder(cmd
dec and cmd accpt for the command,then read for
readdataor wdata accpt for writedata).Thecmd dec
statedecodestheaddressgroupto selectthechannelcorre-
spondingto the right slave, which is the de�ning feature
of the narrowcastconnectionthat implementsdistributed-
shared-memorycommunication.

For the communicationto be stoppedwhen a break-
point is detected,this FSM needsto beadapted.Thestates
that are responsiblefor handshakingareduplicatedin so-
calledshadow states.Thesearethelightergraystatesin the
statediagram,with anapostropheappendedto thenameof
the original state. Shadow statesdiffer from their original
counter-part. First, whenin a shadow state,theFSM deac-
tivatestheNI shell's handshake signals,causingcommuni-
cationbetweenthemasterandNI shellportsto (eventually)
stop.Second,to takeanFSMoutof ashadow state,asignal
from theexternaldebuggersoftwareis required.

In the particular FSM of Figure 11, the stop tran-
sitions s2 and s6 are equal to the original f2 and
f6 , but include checking that the channel should be
stopped,and that an unconditionalstop or stop condi-
tion occurs: (stop enable[i] = logic-1) AND
((stop = logic-1) OR (stop condition[i]
= logic-1)) , where i is the channelidenti�er. f2'
and f6' are modi�ed from f2 and f6 respectively by
including the negatedstopcondition. The continuetransi-
tionsc2 , c6 , andc7 areequalto theoriginal f2 , f6 , and
f7 ANDed with the continue[i] = logic-1 signal,
respectively. A generalrecipefor otherprotocolFSMscan
beeasilyderivedfrom thisexample.

The stop enable , stop condition , and
continue signals come from the NI shells TPRs,

describedin the following section. They control how the
NI shell hardwarereactsto incomingeventson the stop
signal. TAP controller instructionssetandreadthe TPRs,
as describedin Section4.5. The userusesa higher-level
debug API, de�ned in Section5, built on top of the TAP
controllerinstructions.

4.4. Net work In terface Debug Con trol

Thedebug signalsrequiredto control thestateprogres-
sion of the NI shell FSMsoriginatefrom an NI-shell TPR
(seeFigure6). All NI-shell TPRsareincludedin theTPR
daisy-chaindescribedearlierin Section4.1. TheNI TPRis
adataregisterthatprovidestheuserwith all requireddebug
controlover theinterconnectinteractions.By programming
thevariousNI TPRstheusercanachieve transaction,mes-
sage,and/orelementdebuggingperchannel.As shown in
Figure7(b),theNI TPRconsistsof 5 �elds: stop enable ,
stop granularity , stop condition , continue , and
ip stop . All but thelast�eld arepresentperchannel.

1) Stop Enable: This �eld indicateswhetherthe com-
municationonaparticularchannelis stoppedonaninternal
eventor not. A logic-0 meansthatthecommunicationon
this channeldoesnot stopwhenaneventsignalis received
from theEDI. Also a possiblesoftwarestopis ignored(see
the descriptionof the stop condition �eld below). A
logic-1 stopsthechannelon theconditions,speci�ed by
thestop granularity andstop condition �elds.

2) Stop Granularity: This �eld controlsthegranularity
atwhichthecommunicationonacertainchannelis stopped.
A logic-0 andlogic-1 allow ongoingmessagesandele-
ments,respectively, to completebeforestopping.Thelatter
will stopthechannelfaster.

3) StopCondition: Providedthatstoppinghasbeenen-
abled(i.e. stop enable setto logic-1) for thechannel,
and the appropriatestop granularityhasbeenset, this bit
determinesunderwhichconditionthis channelwill stop.A
logic-0 meansthatthechannelwill stoponly afterapulse
from the EDI hasbeenreceived. A logic-1 meansthe
channelwill stopunconditionallybeforethe next element,
at thegranularityspeci�edby thestop granularity bit.
This channelwill stopirrespective of whethera stoppulse
arrivedfrom theEDI or not.

This �eld givestheuserthe �e xibility to eitherwait for
a stoppulsefrom the EDI (i.e. for an absolutebreakpoint
or anexternalstopcommand),or programa channelto be
stoppedunconditionally(for a pre-programmedor forced
userstop). Therearetwo reasonsfor providing this �eld.
First,in caseof (in�nitely) longtransactionsor errorsonthe
interface,the usercanstopthe NOC by programmingthis
�eld without having to wait for a transactionto complete.
Second,a single-stepconsistsof a continueatomicallyfol-
lowedby animplicit unconditionalstop.This �eld enables

this implicit stop.
4) Continue: Thestopcombinedwith thecontinuegives

theuserthepower to observe thefunctionalbehavior of the
SOC in a controlledfashionduring debug. The continue
�eld is interpreteddifferently from the other �elds. Writ-
ing logic-1 in the continueTPR causesan active-high
signalto be fed to the NI shell. Upon continuingcommu-
nication, the shell resetsthis signal's value automatically
throughspecialresetlogic. Settingthis bit to logic-1 is
thusinterpretedasasinglecontinuepulsefor thechannel.

A continuewith theappropriatestopconditiontherefore
ensuresanatomiccontinueandstop,to ensurethatexactly
onehandshaketakesplace.Thisaccuracy cannotbeguaran-
teedby separatecontinueandstopcommandsbecausethey
involve userinteraction,TPRprogramming,stopeventdis-
tribution, etc. all which take time, duringwhich anIP may
executemultiplehandshakes.

5) IP Stop: Every NI shell TPR also has a single
ip stop bit whichenablestheNI shellto forwardanevent
to theconnectedIP cores.This is usedfor a functionalstop
requestfor theIP cores,enablingthestoppingall thecom-
ponents(the interconnectand the IPs) of a SOC closeto
eachotherin time. Otherwise,only stoppingthe intercon-
nectwithouttheIP coresmeansthatthecomputationalstate
of theIP coresmightstill advanceasthey continueinternal,
non-communication-relatedoperations. This complicates
debugasthestatesof differentpartsof thesystemretrieved
lateronmaybedif�cult to correlateto oneanother.

A logic-0 meansnot to signaltheconnectedIP cores
to stop.Settingthevalueto logic-0 is alsousedto signala
continueactionwhentheIP coreswerepreviously stopped
usingthis method. A logic-1 signalsa stopto the con-
nectedIP cores,whena triggereventcomesin via theEDI.

4.5. Extra TAP Con troller Instructions

The entire on-chip debug infrastructureis controlled
and programmablethrough an IEEE 1149.1Test Access
Port (TAP). A TAP is often already included in a chip
designto allow board-level manufacturing test. To sup-
port communication-centricdebug, the controller associ-
atedwith theTAP hasbeenextendedwith anumberof user-
de�ned instructions:

� DBGRESET: issuea functionalresetof thechip.
� PROGRAMTPR: program the monitor and NI TPRs.

Theformerdeterminethebreakpointcondition(s).The
lattercontroltheresultingdebugcontrolactions.

� QUERYTPR: query the statusof the breakpoint(trig-
geredor not) andthechannels(whethertherearestill
on-goingtransactions)in theNI shells.

� JTAG STOP: senda trigger pulseto the EDI from the
TAP.

� PROGRAMTCB: switch the systembetweenfunctional
anddebugmodes.

� DBGSCAN: scanout the completestateof the system
via thescanchainsin debugmode.

These instructions implement safe reading and writ-
ing of TPRs(which can be non-trivial due to the differ-
encein debug and functional clock domains). They hide
SOC-dependentimplementationdetailsof theTPRsin scan
chains,etc. Thesegenericinstructionsare however still
fairly low level for an enduserbecause(s)hewould have
to know the exact TPR layoutsof Figure7 andtheir posi-
tionsin theTPRchain. It is for this reasonthatwe de�ned
a higher-level softwareAPI, which is describedin the fol-
lowing section.

5. Off-chip DebuggerSoftwareAPI

We extendedtheTCL interfaceof our hardwaredebug-
ger[15] to controlthedebugfunctionalityin auser-friendly
manner. Thefollowing API functionsareimplemented:

� reset : Issuesafunctionalresetof thesystembyusing
theDBGRESETinstruction.

� set bp < monitor > [< condition >]: Setsup the
< condition > in the monitor's TPR. When the optional
< condition > �eld is left out, the breakpointsetting is
cleared.Thiscall usesthePROGRAMTPRinstructionto pro-
gramthe appropriatemonitor TPR bits via the TAP. Here,
and below, < monitor > s and < channel > s are speci�ed
usingtheir full, hierarchicaldesignnames.

� set bp action < channel > [< granularity >
< condition >]: Setsup a breakpointactionon thechan-
nel. The < granularity > is one of transaction ,
message , or element . The < condition > is edi
or always . When the optional < granularity > and
< condition > �elds areleft out,thebreakpointactionset-
ting is cleared.This call usesthePROGRAMTPR instruction
to programtheappropriateNI shellTPRbitsvia theTAP.

� get mon status [list of < monitor > s]: Returns
anASCII string, indicatingwhetherthespeci�ed monitors
have triggered(logic-1) or not (logic-0).

� get ni status < ni > : Returnsan ASCII string in-
dicatingwhetherthe channelsin the speci�ed NI are idle
(logic-1) or not (logic-0).

� continue [list of < channel > s]: Causesthe com-
municationonthechannelsto continue.If theoptional�eld
is left out, all channelsare continued. This call usesthe
PROGRAMTPR instructionto set the continue bits in the
appropriateNI TPRsto logic-1 via theTAP.

� synchronize : Retrieve thecompletestateof thesys-
temby �rst switchingthesystemto thedebug mode,using
the PROGRAMTCB instruction,and subsequentlyscanning
out themanufacturingtestscanchains,usingtheDBGSCAN

instruction.Thenthesystemis switchedbackto functional
mode,using the PROGRAMTCB instruction. The complete
stateis storedin an internaldatabasefor subsequentquery
by theuser.

6. Experimental Results

6.1. Example Use Case

In this subsectionwe show how thedebug infrastructure
and the softwareAPI work togetheron an example. Our
automateddesign�o w [6] generatedthesystemshown be-
fore in Figure6. This includestheRTL VHDL of theNOC,
theclockandresetcontrollers,testbenchandtraf�c genera-
tors,embeddedC codeto programtheNOC,andscriptsfor
gate-level synthesis,scan-chaininsertion,etc. Eachmas-
ter hasa connectionto both slaves. In Figure12 we show
signal tracesof the gate-level implementationof the NOC
with scanchains.We boot thesystemuntil it is runningin
functionalmode(omittedfrom thetrace).Thesystemis de-
bugged�rst at the messagelevel, and thenelementlevel.
This is accomplishedby Script 1, which usesthe software
API de�ned above to controltheon-chipdebugsupport.

Script 1 ExampleDebugScript
1: set bp top.R00.M378
2: set bp action f top.NI1.ch1g edi
3: while f [get mon status top.R00.M]eq“0” g fg
4: while f [get ni status NI1] ne“1111”g fg
5: set bp action f top.NI1.ch1g always
6: continue f top.NI1.ch1g
7: continue f top.NI1.ch1g
8: set bp action f top.NI1.ch1g element always
9: for f seti 0g f $i< 5g f incr ig f continue g

10: set bp action f top.NI1.ch1g element edi
11: continue

Line 1 setsabreakpointat themonitorattachedto router
R00, to match the value 378 on the output links of the
router. Line 2 speci�esthat thechanneltop.NI1.ch1 be-
tweenMaster1 and Slave 2 is sensitive to eventsgener-
atedby the monitorsanduser(via the TAP) (edi). Chan-
nel ch0 to Slave 1 continuesto operate.On receptionof an
event from the EDI, the NI �nishes the ongoingmessage
(message). Thesetwo commandsareexecutedby theoff-
chip debuggersoftware,which usestheTAP andDCI (i.e.
theTPRchain)to loadtheappropriatevalues(Section4.4)
in themonitorandNI TPRs.This is for exampleshown by
thetransitionof stop enable , labelledA, in Figure12.

Line 3 polls themonitorTPRto seeif it triggered.Af-
ter a numberof transactions(box labelled B), the mon-
itor triggers, which is shown by the transition on signal

ni stop in labelledC. NI1 completesthe ongoingmes-
sageon thechannelbetweenMaster1 andSlave 2. It then
stops,i.e. doesnot acceptthemessagesfor Slave 2 offered
by themaster(commandvalid is high, seelabelD). In line
4 theTPRof NI1 is checked. First that thereareno pack-
etsin transitonchannelch1 containing(partsof) messages
(cf. live tx wr r 1 andlive tx rd r 1). Secondthatall
creditshave arrivedin theproducer's NI [9].

Line 5 changesthesensitivity of channelch1 to single-
step mode (always), i.e. only a single messageis ac-
ceptedbeforestoppingagain. This is visible at label E,
wherethe stopconditionchanges.Line 6 continuesoper-
ation of channelch1 (label F). Immediately, the write re-
questmessagethat waswaiting (label D) is accepted,sent
to Slave 2, andexecuted. Immediatelyafter, Master1 of-
fers a readtransaction,but this commandis not accepted.
All this is shown in box G. When line 7 is executed,the
waiting readrequestis accepted,executed,and the corre-
spondingresponsedataconsumed(seethebox labelledH).
Thereaddatadtl rd data transitionsfrom “xxx” to a de-
�ned value,but this is hardto readin the signal tracedue
to thetimescaleused.We thenchangethestopgranularity
of channelch1 to the elementlevel, line 8, label I), fol-
lowed by 5 continuecommands(line 9). In the boxes la-
belledJ andK, � ve elementsareaccepted:the command
dtl cmd accept and4 dataelementson dtl wr accept .
Finally, line 10(labelL) makeschannelch1 sensitiveto the
EDI only, i.e. no singlestepping.LabelM shows how the
systemcontinuesat full speedafteracontinuepulse.

All debugcommandsaregivenfrom thedebugclockdo-
main. The systemoperateson the functional clock, and
parts of the systemthat are not debugged operatenor-
mally. For example,althoughnot shown for lack of space,
throughoutthe example the other mastercan continueto
sendtransactionsto both slaves. Figure 12 hasbeenob-
tainedwith a simulator. To debug anFPGAor realsilicon,
thesynchronize call hasto beusedto downloadthestate
of thechip to thedebugger, or vice versa.This meansthat
theentiresystem,includingmaster2, hasto transitionfrom
functional modeto debug mode. In general,clock cycle
synchronizationleavesthesystemin apotentiallyinconsis-
tentstatedueto clock-domaincrossingsthatdo not utilize
valid/accepthandshakes.Propercontinuationcanthenonly
beachievedbeexecutingagain from a systemreset.In our
case,however, the stateof the NOC canbe synchronized
safely and independentlyfrom the clocks usedby the IP
coresbecauseall interfacesdousevalid/accepthandshakes.
At thestartof thesynchronize call, all channelshave to
bestopped,e.g. at theelementlevel which is quickest,and
they have to bere-enabledafterthesynchronization.

6.2. Required Silicon Area

For theexampledescribedabove, theamountof silicon
areaneededto implementtheproposeddebuginfrastructure
is very low: a 2.5%increaseof the NOC area,andno de-
creasein speedwhensynthesizedat250MHz. Theincrease
in areais almostentirelydueto theTPRs;theareafor the
monitorsandEDI nodesareneglible. Regardingtiming, the
NI shellFSMcomplexity is increasedmarginally, but this is
not in thecritical path.TheEDI runsatNOCspeed,andthe
DDI andDCI speedsaredeterminedby thescanchainsand
boundaryscanlogic insertedfor manufacturingtest.

7. Conclusion

We presenteda debug methodologyto debug a SOCby
concentratingon its communication. We applied it to a
NOC becausethey representthe most complex intercon-
nects.Our extendedcommunicationmodelincludeshand-
shakes for eachof the multiple signalgroupsper IP port,
and multiple handshakes per signal group (e.g. for read
andwrite dataelements).It alsoaddressesnarrowcastcom-
municationbasedon distributed sharedmemories,where
a mastertransparentlysendsreadandwrite transactionsto
multipleslavesin its addressspace.As a result,debugcon-
trol is offered at threegranularities: dataelements,mes-
sages,andtransactions.Orthogonally, it is offeredperchan-
nel (master-slavepair),alsowithin narrowcastconnections.
Differentchannelscanbesimultaneouslydebuggedat dif-
ferentgranularities.

We prove our conceptswith an RTL implementation
that is automaticallygeneratedby our NOC design�o w.
We show how to extend NI shell FSMs for generalcom-
municationprotocolswith shadow statesto suspendthe
valid/accepthandshakeson the port interfaces. The mon-
itoring anddistribution of eventsis cleanlyseparatedfrom
how they are interpreted(the debug granularityper chan-
nel), in termsof hardwareandprogramming.Thesoftware
infrastructurehasa clearlyde�ned hardwareinterface(the
TPRsand IEEE 1149.1TAP with additional,genericde-
bug instructions),andan intuitive high-level softwareAPI
thatusesit. Theinfrastructureofferspowerful run-timepro-
grammablebreakpoints,stopping,continuing, and single
steppingat threegranularities.In particular, singlestepping
is anon-trivial extensionto atomicallycontinueandstop,to
guaranteethatnoeventescapesdetection.

Our debug infrastructureconsistsof hardware compo-
nents(monitorsandeventdistribution interconnect),anda
software API and library. The hardware infrastructureis
modular, requiresvery few changesto theNOC,andscales
linearlywith thesizeof theNOCin termsof area.Thearea
costis only 2.5%comparedto theNoC andwithout speed
penalty.

Figure 12. Traces of our Example Debug Session.

References

[1] ARM. AMBA AXI ProtocolSpeci�cation, June2003.
[2] C.Ciordaş, T. Basten,A. R�adulescu,K. Goossens,andJ.van

Meerbergen. An event-basedmonitoring servicefor net-
works on chip. ACM Transactionson DesignAutomation
of ElectronicSystems, Oct2005.

[3] C. Ciordaş, K. Goossens,T. Basten,A. R�adulescu,and
A. Boon. Transactionmonitoringin networkson chip: The
on-chiprun-timeperspective. In Proc.SymposiumonIndus-
trial EmbeddedSystems(IES), Oct2006.

[4] P. Dahlgren,P. Dickinson,andI. Parulkar. LatchDivergency
in MicroprocessorFailureAnalysis.In Proc.IEEEInt'l Test
Conference, Sep/Oct2003.

[5] S. K. Goel andB. Vermeulen. Hierarchicaldatainvalida-
tion analysisfor scan-baseddebugonmultiple-clocksystem
chips. In Proc. IEEE Int'l TestConference(ITC), Oct2002.

[6] S. Gonźalez Pestana, E. Rijpkema, A. R�adulescu,
K. Goossens,andO. P. Gangwal. Cost-performancetrade-
offs in networkson chip: A simulation-basedapproach.In
Proc. Design,Automationand Test in Europe Conference
andExhibition(DATE), Feb2004.

[7] K. Goossens,J.Dielissen,andA. R�adulescu.TheÆthereal
network on chip: Concepts,architectures,andimplementa-
tions. IEEEDesignandTestof Computers, Sept/Oct2005.

[8] K. Goossens,B. Vermeulen,R. van Steeden,andM. Ben-
nebroek. Transaction-basedcommunication-centricdebug.
In Proc. Int'l Symposiumon Networkson Chip (NOCS),
May 2007.

[9] A. HanssonandK. Goossens.Trade-offs in the con�gura-
tion of a network on chip for multiple use-cases.In Proc.
Int'l SymposiumonNetworksonChip (NOCS), May 2007.

[10] K. Holdbrook,S.Joshi,S.Mitra, J.Petolino,R. Raman,and
M. Wong.microSPARC: A casestudyof scan-baseddebug.
In Proc. IEEE Int'l TestConference(ITC), 1994.

[11] A. Hopkins and K. McDonald-Maier. Debug supportfor
complex systemson-chip: A review. IEE Proc. Computers
andDigital Techniques, July2006.

[12] R. Leathermanand N. Stollon. An embeddeddebugging
architecturefor SoCs.IEEEPotentials, Feb-Mar2005.

[13] OCPInternationalPartnership.Opencoreprotocolspeci�-
cation,2001.

[14] Philips Semiconductors.Device TransactionLevel (DTL)
ProtocolSpeci�cation.Version2.2, July2002.

[15] G. Rootselaarand B. Vermeulen. Silicon Debug: Scan
ChainsAlone Are Not Enough. In Proc. IEEE Int'l Test
Conference(ITC), Sept.1999.

[16] A. R�adulescu,J.Dielissen,S.GonźalezPestana,O.P. Gang-
wal, E. Rijpkema,P. Wielage,and K. Goossens. An ef-
�cient on-chip network interface offering guaranteedser-
vices,shared-memoryabstraction,and�e xible network pro-
gramming. IEEE Transactionson CAD of IntegratedCir-
cuitsandSystems, Jan2005.

[17] S. TangandQ. Xu. A multi-coredebug platformfor NoC-
basedsystems.In Proc.Design,AutomationandTestin Eu-
ropeConferenceandExhibition(DATE), 2007.

[18] B. Vermeulen,K. Goossens,R. van Steeden,andM. Ben-
nebroek.Communication-centricSOCdebugusingtransac-
tions. In Proc.EuropeanTestSymposium(ETS), May 2007.

[19] B. Vermeulen,T. Waayers,andS. Goel. Core-basedScan
Architecturefor Silicon Debug. In Proc. IEEE Int'l Test
Conference(ITC), Oct2002.

