Course structure and organization

How will the course be presented?
Where can you find information?
How will you be graded?
Who, when, and how to contact?
Lecturers and TAs

Mitra Nasri
(course organizer and co-lecturer)

Twan Basten
(co-lecturer)

Marc Geilen
(co-lecturer)

Joan Marce i Igual
(main TA)

Hossein Elahi
(support TA)
Course knowledge goals

Module 1: Architecture
- System-on-chip architectures
 - Cache and memory organization;
 - On-chip networks (topologies, routing, deadlock analysis);

Module 2: OS support and programming models
- Operating system supports
 - Threads and processes;
 - Multiprocessor scheduling;
 - Communication and synchronization;
 - Data consistency;
- Programming models and paradigms
 - PThread, TBB, OpenMP, ...;

Module 3: Design-space exploration
- Mapping design space;
- Pareto analysis;
- Runtime adaptation and system scenarios;

Module 4: Models of computation
- Models of computation;
- Dataflow and design;
Course knowledge goals and you!

Module 1: Architecture
- System-on-chip architectures
 - Cache and memory organization;
 - On-chip networks (topologies, routing, deadlock analysis);

Module 2: OS support and programming models
- Operating system supports
 - Threads and processes;
 - Multiprocessor scheduling;
 - Communication and synchronization;
 - Data consistency;
- Programming models and paradigms
 - PThread, TBB, OpenMP, ...;

Module 3: Design-space exploration
- Mapping design space;
- Pareto analysis;
- Runtime adaptation and system scenarios;

Module 4: Models of computation
- Models of computation;
- Dataflow and design;

Knowledge needed to become a developer

Knowledge required to become a system architect

Electronic Systems
Course skill goals

- discrete-event modeling
- experimental research
- (peer) reviewing

You will learn them through the assignments

Logistics (related to Covid19)

- Lectures and lab hours will be on campus

- The course follows a “blended education” style
 - You watch short pre-recorded lectures
 - Then you attend the lecture
 - Lectures contain “exercises on the topic”, “Q&A”, or “more in-depth discussions”

- The lectures will not be recorded (however, we will make the recording of the lectures of last year available to you)

- The communications happen on MS Teams (you will be automatically invited to the team of the course): 5LIE0 (2021-GS3) Multiprocessors

- Lecture materials, assignments, screencasts, or videos will be published on CANVAS
Organization

• About 16 live lectures and lab sessions
 • Monday, 8:45-10:30
 • Thursday, 13:30-15:15
 • (No classes or lab sessions during the Carnival break)
 • A recorded version of the lectures (from 2021) are available on Canvas
• 3 practical assignments
• oral examination
Course and study material

- slides
- screencasts and videos
- assignments
- POOSL
- background reading material
- multiprocessor basics test

all available through
- TU/e CANVAS, canvas.tue.nl

- You must go through all activities of each Module on Canvas
- You must watch all screencasts before attending the live session on that topic
Course’s Team EE_5LIE0 (2021-2022)

- Channels:
 - **A discussion channel for each assignment**
 - Ask your questions about the assignments during the lab hours.
 - You can also ask your generic questions about each assignment on this channel.
 - When needed, TAs will create a private channel to discuss with you individually.
 - You can try to answer other student’s questions.
 - Active students on Teams who try to answer other’s questions will get “bonus points”.
 - **A discussion channel for any question related to the lectures**
 - General
 - Off topic
 - For anything that is not “directly” related to the course, e.g., fun topics, anime, teaming up for extra activities, finding each other.
Getting a grade: assignments

All assignments are individual!

Estimated workload:
40 hours

Assignment 1
interconnect analysis

Typically C code

Parallel code

Implementation code

HW/SW
Getting a grade: assignments

All assignments are individual!

Estimated workload: 40 hours

Assignment 2
- design-space exploration

Assignment 1
- interconnect analysis

typically C code

parallel code

implementation code

<table>
<thead>
<tr>
<th>Assignment 1</th>
<th>Assignment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>interconnect analysis</td>
<td>design-space exploration</td>
</tr>
</tbody>
</table>

Estimated workload:
40 hours
Getting a grade: assignments

All assignments are individual!

Estimated workload:
16 hours

Assignment 3
peer review

Assignments 1 & 2

design-space exploration

Assignment 1
interconnect analysis
Getting a grade: assignments

- **Assignment 1:** interconnect analysis
 - from: 10 February
 - till: 9 March, 23:59h

- **Assignment 2:** design-space exploration
 - from: 24 February
 - till: 30 March, 23:59h

- **Assignment 3:** peer review
 - Introduced on: 14 February
 - Started from: 10 March
 - till: 8 April, 23:59h

Timeline:

- A1: 40h, A2: 40h, A3: 16h, lectures: 44
<table>
<thead>
<tr>
<th>Assignment</th>
<th>from</th>
<th>till</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1</td>
<td>10 February</td>
<td>9 March, 23:59h</td>
</tr>
<tr>
<td>interconnect analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignment 2</td>
<td>24 February</td>
<td>30 March, 23:59h</td>
</tr>
<tr>
<td>design-space exploration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignment 3</td>
<td>Introduced on 14 February</td>
<td>8 April, 23:59h</td>
</tr>
<tr>
<td>peer review</td>
<td>Started from 10 March</td>
<td></td>
</tr>
</tbody>
</table>

Deadlines are firm!

- Deadline miss → Re-examination in Q4
- Re-examination failed → re-take the course next year
A note on **individual** assignments

- Discussions with fellow students are allowed, but
- All work (reports, models, scripts, programs, ...) **must be your own.**
- Your work will be checked for plagiarism!

If copying of work is suspected, it will be taken to the examination committee.
- In 2007, a student was suspended because of copying work.
- In 2008, a student failed because of copying work.
- In 2014, two students failed because of too close collaboration.

Start with the assignments as early as possible!

5 ECTS = 140 hours of study load

≈ 15 hours per week

≈ 2 full days (working 8 hours a day)
Getting a grade: oral exam

• Covers assignments and lectures.

• The (two) written and (two) received peer reviews are the basis.

• 45 mins + 15 mins evaluation

• You need to pass the multiprocessor basics test before registering

Check out the Study Guide for details!
Getting a grade: multiprocessor basics

• A CANVAS quiz

• published after completion of regular lectures in week 7

• that can be taken any time after publication, as often as you like

• and is passed with >= 80% correct answers

Check out the Study Guide for details!
Getting a grade: assignments + oral exam

Assignment 1
interconnect analysis

Assignment 2
design-space exploration

Assignment 3
peer review

weight

35%
40%
25%

The oral exam determines the result!

Bonus for the oral exam:
Being active during the lectures and on Teams
Getting a grade: re-examination

- Q4, similar relative schedule
- Missing a deadline or failing the exam: retake the course next academic year
Course schedule

Week 1

<table>
<thead>
<tr>
<th>wk</th>
<th>date</th>
<th>classes</th>
<th>assignments</th>
<th>study material</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-2</td>
<td></td>
<td>- course intro</td>
<td></td>
<td>- Slides</td>
<td>Twan Basten and Mitra Nasri (on campus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- course structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10-2</td>
<td>Introduction a1</td>
<td>a1 – interconnection analysis</td>
<td>- Assignment 1 text</td>
<td>Marc Geilen (on campus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Live demo of POOSL</td>
<td></td>
<td>- Assignment 1 text</td>
<td>TA (on campus)</td>
</tr>
<tr>
<td></td>
<td>10-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Screencasts for OS support, data consistency, and synchronization</td>
<td>Mitra Nasri (on campus)</td>
</tr>
</tbody>
</table>

Follow the schedule on CANVAS

- **Dates**: The dates of the course.
- **Lecture (during the course timeslot)**: The topic covered in the lecture.
- **Lab (during the course timeslot)**: The activity performed in the lab.
- **Location of the activity**: The location where the activity is held.
- **The person who oversees the item**: The person responsible for the item.

[Follow the schedule on CANVAS]
Course schedule

<table>
<thead>
<tr>
<th>wk</th>
<th>date</th>
<th>classes</th>
<th>assignments</th>
<th>study material</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7-2</td>
<td>- course intro</td>
<td></td>
<td>- Slides</td>
<td>Twan Basten and Mitra Nasri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- course structure</td>
<td></td>
<td></td>
<td>(on campus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Current lecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10-2</td>
<td>Introduction a1</td>
<td>a1 – interconnect analysis</td>
<td>- Screencasts for multiprocessor architecture, interconnect, and memory hierarchy</td>
<td>Marc Geilen (screencasts)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Live demo of POOSL</td>
<td></td>
<td>- Screencasts for experimental research</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- POOSL guide and screencasts;</td>
<td>TA (screencasts)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Install POOSL.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Things to do by yourself before the coming lecture
- Watch the “screencasts” BEFORE the coming lecture

The person who oversees the item
- Twan Basten and Mitra Nasri (on campus)
- Marc Geilen (screencasts)
- TA (screencasts)
- Mitra Nasri (screencasts)
CANVAS

canvas.tue.nl – 5LIE0 – multiprocessors

and the
Study Guide
Contact emails

- Mitra Nasri (course organizer and co-lecturer)
 m.nasri@tue.nl

- Twan Basten (co-lecturer)
 a.a.basten@tue.nl

- Marc Geilen (co-lecturer)
 m.c.w.geilen@tue.nl

- Joan Marce i Igual (main teaching assistant (TA))
 j.marce.i.igual@tue.nl

- Hossein Elahi (support teaching assistant (TA))
 g.elahi@tue.nl