
Multiprocessor Resource Allocation for
Throughput-Constrained Synchronous Dataflow Graphs∗

S. Stuijk, T. Basten, M.C.W. Geilen and H. Corporaal
Eindhoven University of Technology, Department of Electrical Engineering

{s.stuijk, a.a.basten, m.c.w.geilen, h.corporaal}@tue.nl

Abstract. Embedded multimedia systems often run multiple time-con-
strained applications simultaneously. These systems use multiprocessor
systems-on-chip of which it must be guaranteed that enough resources are
available for each application to meet its throughput constraints. This re-
quires a task binding and scheduling mechanism that provides timing guar-
antees for each application independent of other applications while taking
into account the available processor space, memory and communication
bandwidth.

Synchronous Dataflow Graphs (SDFGs) are used to model time-con-
strained multimedia applications. They allow modeling of cyclic, multi-
rate dependencies between tasks. However, existing resource allocation
techniques can only deal with acyclic and/or single-rate dependencies. De-
pendencies in an SDFG can be expressed in single-rate form, but then the
problem size may increase exponentially making resource allocation infea-
sible. This paper presents a new resource allocation strategy which works
directly on SDFGs, building on an efficient technique to calculate through-
put of a bound and scheduled SDFG. Experimental results show that the
strategy is effective in terms of run-time and allocated resources.

Categories and Subject Descriptors: C.3 [Special-purpose and
Application-based Systems] Real-time and embedded systems

General Terms: Algorithms, Experimentation, Theory.

Keywords: Synchronous Dataflow, multi-processor, throughput,
mapping.

1. INTRODUCTION
Modern embedded multimedia systems support many different

applications. To meet the growing computational demands of these
applications, multiprocessor systems-on-chip (MP-SoCs) are used.
Consumers expect that the system is robust and its performance
is guaranteed [9]. This requires that every application running on
the system has a predictable timing behavior which is independent
of other applications running on the same system. The resource
allocation strategy, which binds tasks from an application to the
resources and schedules the tasks and the inter-task communication
on the assigned resources, should offer this predictability.

Synchronous Dataflow Graphs (SDFGs) [13] are used to model
multimedia applications with timing constraints that must be bound
to an MP-SoC [18]. It allows modeling of both pipelined stream-
ing and cyclic dependencies between tasks. Furthermore, analysis
techniques to study, for example, the throughput and storage re-
quirements of an SDFG exist [10, 21]. An example of an SDFG is
depicted in Fig. 1. The nodes of an SDFG, called actors, communi-
cate with tokens sent from one actor to another over the edges. The
actors typically model application tasks and the edges model data
∗This work is supported by the Dutch Science Foundation NWO,
project 612.064.206, PROMES.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

a b c d
2376 1 1

11

1

1

1

12376 2376

2376
2544 25444

(initial) tokensinput rate

actor

output rate edge

Figure 1: SDFG of an H.263 decoder.

or control dependencies. An essential property of SDFGs is that
every time an actor fires (executes) it consumes the same amount
of tokens from its input edges and produces the same amount of to-
kens on its output edges. These amounts are called the rates. In an
SDFG, the rate at which tokens are produced on an edge may dif-
fer from the rate at which tokens are consumed from the edge. An
SDFG can always be converted to a homogeneous SDFG (HSDFG)
in which all rates are equal to one [20]. However, this can lead to
an exponential increase in the number of actors in the graph. For
example, the HSDFG corresponding to the SDFG shown in Fig. 1
contains 4754 actors.

Existing resource allocation strategies for time-constrained ap-
plications are based on HSDFGs or acyclic dependency graphs (a-
cyclic HSDFGs). Techniques for acyclic graphs often do not take
streaming (iterative, overlapping execution of the graph) into ac-
count, which makes them not very suitable for throughput-con-
strained multimedia applications. Moreover, an SDFG model of an
application must be converted to an HSDFG to apply any of these
techniques. The H.263 decoder example shows that this conversion
drastically increases the problem size, rendering this approach of-
ten infeasible. The biggest problem with working on an HSDFG
instead of on its corresponding SDFG is the time needed to com-
pute the throughput. A resource allocation strategy must compute
the throughput of an application bound to the system at least once in
order to verify whether the throughput constraint is met. Through-
put is determined by the cycles in a graph. The fastest method to
compute the throughput of an HSDFG is the use of a maximum cy-
cle ratio algorithm [20]. The fastest known variant has a run-time of
21 minutes on a P4 at 3.4GHz for the HSDFG of the H.263 decoder
shown in Fig. 1. So any HSDFG-based resource allocation strategy
runs for at least 21 minutes on the H.263 decoder. Typically, a re-
source allocation strategy performs a throughput computation more
than once in order to get a notion of the critical cycles in the appli-
cation and tune the resource allocation. This paper presents a novel
technique for task binding and scheduling directly on SDFGs. This
keeps the problem size typically much smaller and allows us to per-
form resource allocation for a larger class of applications within a
limited run-time. For example, the proposed strategy has a run-time
of less than 3 minutes on the H.263 decoder. It performs 8 through-
put checks directly on the provisionally mapped SDFG during the
trajectory to find the binding and scheduling.

Overview. Sec. 2 discusses related work in the field of resource
allocation for dataflow graphs. Sec. 3 and Sec. 4 introduce respec-
tively SDFGs and schedules for them. The architecture platform is
introduced in Sec. 5 and the application model is formalized in Sec.
6. The resource allocation problem is defined in Sec. 7. Through-
put computation for an SDFG bound to an MP-SoC is explained in
Sec. 8. Our SDFG-based resource allocation strategy is described
in Sec. 9. The experimental results are presented in Sec. 10.

2. RELATED WORK
An overview of traditional scheduling and binding techniques

for dataflow graphs can be found in [20]. All mentioned techniques
use acyclic graphs in which every task must be executed once. We
assume that tasks are repeatedly executed and different tasks may
be executed with different rates. We also allow cyclic dependencies
between different (pipelined) executions of the same task.

Resource allocation for acyclic graphs with timing guarantees is
studied in [11, 12]. Hu et. al assume that every task can only be
bound to a single processor type [11]. The strategy only decides on
which processor (i.e. location) to use. Our strategy has to decide on
both the processor type and its location and works for a larger class
of models, as explained. In [12], the resource allocation problem is
formulated as a constraint satisfaction problem. Cyclic dependen-
cies which determine, for example, the throughput of an application
cannot be expressed in this framework.

A multi-objective evolutionary algorithm to bind an application
described as a Kahn Process Network to a heterogeneous MP-SoC
is presented in [8]. The approach can deal with cyclic task graphs,
but no timing guarantees are provided on the resulting binding.

In [15], an approach is presented to perform resource allocation
for a time-constrained HSDFG on a homogeneous MP-SoC. Bind-
ing is done using a multi-dimensional bin-packing algorithm that
considers the same resources as our strategy does. However, our
strategy can handle arbitrary SDFGs while targeting a heteroge-
neous MP-SoC.

A method to bind an application described as a Cyclo-Static
Dataflow graph onto a heterogeneous MP-SoC is given in [6]. It
tries to maximize the throughput which can be realized with the
available resources. Only a single application can be mapped to the
system. Resource allocation to multiple applications with through-
put guarantees for each of them is not considered. Our strategy tries
to minimize resource usage under given throughput constraints,
thus maximizing the number of applications that can run concur-
rently on the system with throughput guarantees.

3. SYNCHRONOUS DATAFLOW GRAPHS
Let N denote the positive natural numbers, N0 the natural num-

bers including 0, and N
∞
0 the natural numbers including 0 and in-

finity (∞).

DEFINITION 1. (SDFG) An SDFG is a tuple (A,D) consisting of
a finite set A of actors and a finite set D ⊆ A2 ×N

2 of dependency
edges. A dependency edge d = (a,b, p,q) denotes a dependency of
actor b on a. When a executes it produces p tokens on d and when
b executes it removes q tokens from d. Edges may contain initial
tokens defined by Tok : D → N0.

As mentioned, actor execution is defined in terms of firings. An
essential property of SDFGs is that every time an actor fires it con-
sumes the same amount of tokens from its input edges and produces
the same amount of tokens on its output edges. These amounts are
called the rates. The rates determine how often actors have to fire
wrt each other such that the distribution of tokens over all edges is
not changed. This property is captured in the repetition vector.

DEFINITION 2. (REPETITION VECTOR) A repetition vector of an
SDFG (A,D) is a function γ : A → N0 such that for every edge
(a,b, p,q) ∈ D from a ∈ A to b ∈ A, p · γ(a) = q · γ(b). A repetition
vector γ is called non-trivial if ∀a ∈ A, γ(a) > 0.

An SDFG is called consistent if it has a non-trivial repetition vec-
tor. The smallest non-trivial repetition vector of a consistent SDFG
is called the repetition vector. Consistency and absence of dead-
lock are two important properties for SDFGs which can be verified
efficiently [5, 13]. Any SDFG which is not consistent requires un-
bounded memory to execute or deadlocks, meaning that no actor is
able to fire. Such SDFGs are not useful in practice. Therefore, we
focus on consistent and deadlock free SDFGs.

Throughput is an important design constraint for embedded multi-
media systems. The throughput of an SDFG refers to how often an

t1

NI

C1

C2
NI

t2P1

M1

P2

2M

Figure 2: Example architecture platform.

Table 1: Properties of the example platform.
pt w m c i o L (c)

t1 p1 10 700 5 100 100 c1 1
t2 p2 10 500 7 100 100 c2 1

actor produces an output token. To compute throughput, a notion of
time must be associated with the firing of actors and an execution
scheme must be defined. We do so in the following sections.

4. SCHEDULING
A resource allocation strategy can bind multiple actors, possi-

bly of different applications, to the same processor. In a system
with a predictable timing behavior, a scheduling mechanism must
order the execution of the actors such that it is possible to provide
a guarantee on the maximum amount of time between the moment
that an actor is ready to fire and the completion of the firing (its
response time). Time-division multiple-access (TDMA) schedul-
ing offers these guarantees [4]. It uses a periodically rotating time
wheel. An application reserves a time slice on the wheel during
which it may fire its actors. A TDMA scheduler can also be used
to schedule multiple actors of the same application on a single pro-
cessor [4]. Time slices are then reserved for individual actors. This
gives very conservative estimates on the worst case actor response
time [20]. Therefore, we apply static order scheduling for actors
within an application. Following [16], a static-order schedule S for
a set A of actors is an infinite sequence a1a2a3... of actor firings,
with ai ∈ A. Practical static-order schedules consist of a (possible
empty) sub-sequence which is seen once followed by a finite sub-
sequence which is infinitely often repeated.

5. ARCHITECTURE PLATFORM
The architecture template in our work is similar to the tile-based

multiprocessor described in [7] in which multiple tiles are con-
nected by an interconnection network. We assume point-to-point
connections with a fixed latency between tiles. These connections
can, for example, be implemented through a network-on-chip with
timing guarantees. Fig. 2 shows an example architecture platform
with two connected tiles. Each tile contains one processor (P) and
a local memory (M). A tile contains also a set of communication
buffers, called the network interface (NI), that are accessed both
by the local processor and the interconnect. Multiprocessor sys-
tems like Daytona [1], Eclipse [19], Hijdra [3], and StepNP [17] fit
nicely into this template. The resources in a tile can be described
as follows. Let PT be the set of all processor types.

DEFINITION 3. (TILE) A tile is a 6-tuple (pt,w,m,c, i,o) with pt ∈
PT the processor type, w ∈ N0 the size of the processor’s TDMA
time wheel (in time units), m ∈ N0 the memory size (in bits), c ∈N0
the maximum number of connections supported by the NI, and i,o∈
N0 the maximum incoming and outgoing bandwidth (in bits/time-
unit).

In practice, a time wheel may already be partially occupied when
binding an application to a tile. The function Ω : T → N0, with T
the set of tiles, gives for a tile the size of the time wheel which is
already occupied. Other resources in a tile may also be (partially)
occupied. For simplicity, we assume that all memory (m), connec-
tions (c), and incoming (i) and outgoing (o) bandwidth specified
by a tile are available for an application. Resources that are not
available (i.e., used by other applications) should not be specified.

DEFINITION 4. (ARCHITECTURE GRAPH) An architecture graph
(T,C,L) consists of a set T of tiles, a set C ⊆ T 2 of connections
and a latency function L :C→N. A connection is a tuple c = (u,v)
through which data can be sent from a tile u to a tile v with a latency
L (c) (in time units).

a2a1 a3
1d 2d

3d

111 2

11

1

Figure 3: Example SDFG.

Table 2: Properties of the example application.
p1(τ ,µ) p2(τ ,µ) sz αtile αsrc αdst β

a1 (1,10) (4,15) d1 7 1 2 2 100
a2 (1,7) (7,19) d2 100 2 2 2 10
a3 (3,13) (2,10) d3 1 1 0 0 0

The connections between tiles introduce a latency when data is
sent between them. Each connection can have a different latency.
In this way, the latency of different connections through a network-
on-chip or segmented bus can be taken into account. The amount
of data which can be sent per time-unit (i.e. bandwidth) is limited
by the incoming, i, and outgoing bandwidth, o, of the tiles. Tab. 1
gives the values of all elements in the architecture graph of Fig. 2.

6. APPLICATION MODEL
The structure of an application can be described with an SDFG.

A resource allocation strategy needs also information on the re-
source requirements of the actors and edges in the graph. It must,
for example, know to which processor types an actor can be bound
and how many CPU cycles it requires on these processors. Further-
more, the application model must also provide a throughput con-
straint which must be satisfied when the application is bound to the
architecture graph. An application with its resource requirements
and throughput constraint is described by an application graph.

DEFINITION 5. (APPLICATION GRAPH) An application graph is
a 5-tuple (A,D,Γ,Θ,λ) of an SDFG (A,D), the functions Γ : A×

PT → N
∞ ×N

∞
0 and Θ : D → N

5
0, and the throughput constraint

λ ∈ R. Function Γ gives for each actor a ∈ A and each processor
type pt ∈ PT a tuple (τ,µ) with τ and µ respectively the execution
time (in time units) and memory requirement (in bits) of a when
assigned to a processor of type pt or ∞ if a cannot be assigned to
a processor of type pt. Function Θ gives for each dependency edge
d = (a,b, p,q) ∈ D a 5-tuple (sz,αtile,αsrc,αdst ,β) with sz the size
of a token (in bits), αtile the memory (in tokens) required when a
and b are assigned to a single tile, αsrc and αdst the memory (in
tokens) required in the source and destination tile when a and b are
assigned to different tiles and β the bandwidth (in bits/time-unit)
required when a and b are assigned to different tiles.

Tab. 2 shows the values of the functions Γ and Θ for the actors and
edges of the application graph shown in Fig. 3.

7. RESOURCE ALLOCATION PROBLEM
A resource allocation strategy must bind each actor from the ap-

plication graph (A,D,Γ,Θ,λ) to a tile in the architecture graph
(T,C,L). As a consequence, also each dependency edge in the
application graph is assigned to a connection between two tiles or
to the memory inside a tile. The binding of actors to tiles is given
by the binding function.

DEFINITION 6. (BINDING FUNCTION) A binding function is a
function B : A → T which gives for every actor a ∈ A the tile t ∈ T
to which it is bound.

Multiple applications are scheduled on a tile using a TDMA
scheduler (see Sec. 4). For each application graph, a time slice
should be reserved on each tile which executes actors from the
graph. A static order schedule, ordering the actor execution of an
application graph on a processor, must also be constructed for each
tile. Both the size of the time slice and the static order schedule are
given for each tile by the scheduling function.

DEFINITION 7. (SCHEDULING FUNCTION) A scheduling function
is a function S : T → N0 ×SO, where SO is the set of all static or-
der schedules. It gives for a tile t ∈ T from the architecture graph

a2a1 a3
s

c

αtile,d1=1 =2αsrc,d2
αdst,d2=2

111 1

2

2

Figure 4: A binding-aware SDFG.

a tuple (ω,S), where ω is the size of the TDMA time slice reserved
for the application graph and S is a static order schedule for the
actors from the application graph which are bound to t.

In the remainder, we use the following notations. For each tile
t ∈ T , t = (ptt ,wt ,mt ,ct , it ,ot) and S (t) = (ωt ,St); for each actor
a ∈ A and processor type pt ∈ PT , Γ(a, pt) = (τa,pt ,µa,pt), and, for
each dependency edge d ∈D, Θ(d) = (szd ,αtile,d ,αsrc,d,αdst,d ,βd).
We use At to denote the set of all actors a∈ A bound to t ∈ T . Using
the set At , we define three sets of dependency edges. The first set
Dt,tile contains all dependency edges of which both the source and
destination actor are bound to t. Set Dt,src contains all dependency
edges of which the source actor is bound to t and the destination ac-
tor is bound to a different tile; Dt,dst contains all dependency edges
of which the destination actor is bound to t and the source actor is
bound to a different tile.

Binding and scheduling functions give a resource allocation for
an application graph on an architecture graph. This allocation is
called valid iff the throughput constraint is met and not more re-
sources are allocated than available. The next section explains how
throughput is computed. To guarantee that not more resources are
allocated than available, the following must hold for each tile t ∈ T :

1. the allocated time slice is available: ωt ≤ wt −Ω(t),

2. not more memory is allocated than available: ∑
d∈Dt,tile

αtile,d ·

szd + ∑
d∈Dt,src

αsrc,d · szd + ∑
d∈Dt,dst

αdst,d · szd + ∑
a∈At

µa,pt ≤ mt ,

3. not more connections are allocated than available:
|Dt,src|+ |Dt,dst | ≤ ct ,

4. not more input and output bandwidth is allocated than avail-
able: ∑

d∈Dt,dst

βd ≤ it ∧ ∑
d∈Dt,src

βd ≤ ot .

8. THROUGHPUT ANALYSIS

8.1 Modeling Resource Allocations in SDFGs
In [10], a technique is presented to compute the throughput of

an SDFG for a platform with infinite resources. It uses a function
ϒ : A→N which assigns to every actor a∈ A the time it takes to ex-
ecute the actor once. To compute the throughput of an application
graph bound to an architecture graph, the resource allocation deci-
sions must be taken into account. The effect of the binding function
is modeled in a binding-aware SDFG (Ab,Db,ϒ) consisting of an
SDFG (Ab,Db) with a timing function ϒ.

We use the application graph of Fig. 3 which is bound to the
architecture graph of Fig. 2 to explain how binding decisions are
modeled into the binding-aware SDFG shown in Fig. 4 (omitting
rates 1 for clarity). Assume that the actors a1 and a2 are bound to
tile t1 and a3 is bound to t2. The execution time of a1 and a2 is
then equal to 1 and the execution time of a3 is equal to 2 (see Tab.
2). On a tile, only one instance of an actor can be executing at the
same moment in time. This is modeled by adding a self-edge with
rates one and one initial token to the actors a2 and a3. The binding
of a1 and a2 to the same tile implies that the edge d1 is also bound
to t1. The memory constraint imposed by this binding is modeled
with an edge from a2 to a1 with αtile,d1 initial tokens. This limits
the storage space of edge d1 to the memory requirement given by
the application graph. Edge d2 must use connection c1 as its source
and destination actor are bound to tiles t1 and t2. The delay for
sending a token over the connection is modeled with the actor c.

Its execution time, ϒ(c), is equal to L (c1)+
⌈

szd2 /βd2

⌉

. The self-
edge on actor c enforces that the tokens are sent sequentially over
the connection. Actor c is a very simple connection model. It can
be replaced with a more detailed model if available, such as the
network-on-chip connection model of [14]. The edges from a3 to
c and from c to a2 enforce respectively the memory constraints of
d2 in the destination and source tile. No assumption is made on the
position of two TDMA time wheels wrt each other when a token is
sent over a connection. To guarantee that the throughput analysis is
conservative wrt an implementation, we must assume that a token
arrives at the destination tile exactly at the end of the slice which
is reserved for the application. The token must then wait wt2 −ωt2
time steps before it can be used. This is modeled by s, which has
an execution time ϒ(s) = wt2 −ωt2 .

8.2 Throughput Computation
A self-timed execution of an SDFG is used in [10] to compute

the throughput of the graph. In this type of execution, an actor fires
as soon as sufficient tokens are present on all its inputs. The firing
ends when time has advanced with the execution time of the ac-
tor. At that moment, the actor produces tokens on all of its outputs.
The state of the SDFG is described by the distribution of tokens
over the channels and the remaining execution time of all active
actor firings. To compute the throughput, states visited during the
self-timed execution are examined, and a small subset is stored, till
a recurrent state, which always exists, is found. At that moment,
all reachable states are found and the throughput can be computed
from the periodic part of the state-space. Fig. 5(a) shows the state-
space of our example SDFG of Fig. 3. States are represented by
black dots and state transitions are indicated by edges. The label
with a transition indicates which actors start their firing in this tran-
sition and the elapsed time till the next state is reached. Actor a3
executes once every 2 time-units (i.e. its throughput is 1/2). This
is the maximal achievable throughput taking into account only the
dependencies inherent in the SDFG. Fig. 5(b) shows the self-timed
state-space of the binding-aware SDFG. The limited storage space
of d1 causes a1 and a2 to fire in sequence and communication and
synchronization is taken into account via firings of actors c and s.
Actor a3 executes once every 29 time-units, which is the maximal
achievable throughput taking the binding into account.

One option to model static order schedules in dataflow graphs is
proposed in [2]. However, the SDFG must then be converted to an
HSDFG. This conversion leads to an increase in the time needed
for the throughput computation (see Sec. 1). To avoid this issue,
the scheduling function, i.e., the time wheel allocations and static
order schedules, is not modeled into the binding-aware SDFG. In-
stead, those are used to constrain the execution of the SDFG when
constructing its state-space. This is done by extending the state
of the SDFG used in [10] with information on the position of the
static order schedule of each tile and the position of the TDMA
time wheels. Additionally, before an actor is allowed to fire, it
should not only have sufficient tokens on its inputs, but it should
also be the actor which should be fired in the current position of the
static order schedule. Furthermore, the remaining execution time
of an actor which is firing is only reduced when the position of the
TDMA time wheel of the tile to which the actor is bound indicates
that the current time unit is reserved for the application to which
the actor belongs. The explored state-space which considers these
constraints on the execution of the SDFG is shown in Fig. 5(c).
The chosen static-order schedules (a1a2)

∗ and a∗3 are in line with
the self-timed schedule, so they do not affect the result. 50% of the
TDMA time wheels are allocated to the application. These time
slot allocations cause actor a1 and a3 to post-pone their firings for
respectively 5 and 1 time-unit (see boxes in Fig. 5(c)). As a result,
actor a3 fires only once every 30 time-units.

In [4], TDMA time slice allocations are modeled by increasing
the execution time of every actor firing with the fraction of the
TDMA time wheel which is not reserved by the application. This
increases the execution time of actor a3 with 5 time units. This is
the maximum time our technique will post-pone the firing of an ac-

a1, 1 a1, a2, 1 a1, a2, a3, 1

a1, a2, 1

a2, 1 a1, c, 1 a2, 1 a1, 9 a2, c, s, 1 a1, 10

a2, s, 1

a1, 4a3, 3

c, 11

a1, 6

a2, 1 a1, c, 1 a2, 1 a1, 9 a2, c, s, 1 a1, 10

a2, s, 1

a1, 4a3, 2

c, 11

a1, 1

(a)

(b)

(c)

Figure 5: State-space application (a), binding-aware SDFG (b)
and constrained execution (c).

tor. In many situations, the time with which a firing is post-poned
is less. Hence, our technique gives a more accurate throughput
result. This reduces the resource requirements of the application
while guaranteeing its timing behavior.

9. RESOURCE ALLOCATION STRATEGY
The resource allocation strategy consists of three main steps which

are each executed once. First, an actor binding is constructed, then
a static order schedule for each tile containing actors of the appli-
cation graph, and finally time slices are allocated.

9.1 Resource binding
The resource binding step must bind every actor from the ap-

plication graph to a tile in the architecture graph. An important
objective in the resource allocation strategy is to meet the through-
put constraint specified by the application graph. For this reason, it
is important that actors whose execution time has a large impact on
the throughput of the application are considered first. The through-
put of an SDFG is known to be limited by its critical cycle [20].
This is a cycle in the corresponding HSDFG with the maximal ra-
tio between the execution time of the actors on the cycle and the
number of tokens on the edges of the cycle. The conversion of
an SDFG to an HSDFG can lead to an exponential increase in the
number of actors in the graph [10]. This makes it infeasible to an-
alyze the HSDFG of an application graph to identify the actors on
its critical cycle. Therefore, the binding step tries to estimate the
criticality of all cycles in the graph (and the actors on them) directly
on the SDFG. This is done with the cost function given by Eqn. 1,
with a ∈ A an actor, C the set of cycles through a, γ the repetition
vector of the application SDFG and Tok(d) the number of initial
tokens of edge d.

cost(a) = max
c∈C

∑
actors b∈c

γ(b) · avg
{pt∈PT |τb,pt 6=∞}

τb,pt

∑
edges d=(u,v,p,q)∈c

Tok(d)/q
, (1)

After sorting the actors in decreasing order, the resource allocation
strategy tries to bind the actors in the given order to the tiles. For
each actor a ∈ A it may have to choose from a number of different
tiles T ′ ⊆ T . The objective of the resource allocation strategy is
to balance the load of the application equally over all tiles. The
load of a tile is estimated by the relative processing performed on
its processor, the fraction of memory used and the average fraction
of occupied connections and bandwidth. Given a (partial) binding,
and the corresponding sets At , Dt,tile, Dt,src, Dt,dst (see Sec. 7),
these aspects are captured in the following definitions, with t a tile
and γ the repetition vector of the application SDFG.

lp(t) =

∑
a∈At

γ(a) · τa,pt

∑
a∈A

γ(a) · max
{pt∈PT |τa,pt 6=∞}

τa,pt

lm(t) = (∑
a∈At

µa,pt + ∑
d∈Dt,tile

αtile,d · szd + ∑
d∈Dt,src

αsrc,d · szd

+ ∑
d∈Dt,dst

αdst,d · szd)/mt

lc(t) = avg

(

∑
d∈Dt,src

βd

ot
, ∑
d∈Dt,dst

βd

it
,
|Dt,src|+ |Dt,dst |

ct

)

Eqn. 2 combines these aspects in a single cost function for a tile t.

cost(t) = c1 · lp(t)+ c2 · lm(t)+ c3 · lc(t) (2)

The constants in the function are specified by the user of the bind-
ing step. This enables the user to trade-off how the various loads
of the tile are weighted wrt each other. The algorithm tries to bind
actor a to a tile t ∈ T ′ in the increasing order given by the tile cost
function based on the current partial binding with a bound to t.
When a tile t ∈ T ′ is found for which it holds that the binding of
a to t does not conflict with the constraints given in Sec. 7 it binds
a to t and the algorithm continues with the next actor. When all
tiles are tried and no valid binding is found, the problem is consid-
ered infeasible. Tab. 3 shows the resulting binding of actors of the
example for various settings of the constants.

After binding all actors to a tile, an optimization is performed to
improve the load balance of the tiles. This is done by considering
all the actors in reverse order. When reconsidering the binding of
an actor a ∈ A which is bound to a tile t ∈ T , its binding is first
removed. Next, all tiles T ′ to which a can be bound are sorted using
Eqn. 2, considering the load of all tiles when the whole application
graph except actor a is bound. The algorithm then tries to bind a to
a tile t ∈ T ′ in the increasing order given by the cost function. Note
that it will always be possible to find a valid binding as the original
binding is one of the bindings which is tried.

9.2 Constructing static-order schedules
For each tile, a static-order schedule must be constructed that or-

ders the firings of all actors bound to it. A list-scheduler is used
to construct these static-order schedules for all tiles at once. The
schedules are constructed via an execution of the binding-aware
SDFG, assuming that for each tile 50% of the available time wheel
is allocated to the application graph. Through actors like s in Fig.
4 the delay for tokens sent between tiles is taken into account in
the schedule construction. When an actor becomes enabled in the
execution of the binding-aware SDFG it does not start its firing im-
mediately. Instead the actor is added to the ready list of the tile
it is bound to. When no actor is firing on the tile, the first ac-
tor is removed from the list and its firing is started. At this mo-
ment, the actor is added to the schedule of the tile. The execution
ends as soon as a recurrent state is found. At this point, a finite-
length schedule has been constructed for each tile. For our exam-
ple, the scheduler constructs for tile t1 a schedule with 17 states -
a1a2a1a2a1a2a1a2a1(a2a1a2a1a2a1a2a1)

∗. After constructing the
schedule, an optimization is performed to remove all recurrent oc-
currences of the same scheduling sequence. In this way, the sched-
ule on t1 is reduced to (a1a2)

∗.

9.3 Time slice allocation
The final step of the resource allocation strategy involves the al-

location of time slices for all tiles. A binary search algorithm is
used, which guarantees that a time slice allocation satisfying the
throughput constraint is found if it exists. The search between
the initial bounds of 1 time slice and the entire (remaining) time
wheel continues until the throughput of the binding-aware SDFG
constrained by the current slice allocation is at most 10% larger
than the throughput constraint. It ends unsuccessfully if the alloca-
tion of the entire remaining time wheels is insufficient to meet the
throughput constraint.

If successful, the slice allocation step so far allocates equal frac-
tions of the remaining time wheel for each tile to which at least one
actor is bound. This is based on the assumption that the processing
load is perfectly balanced over the tiles. However, in case of an

Table 3: Binding of actors to tiles.
c1,c2,c3 a1 a2 a3

1,0,0 t1 t1 t2
0,1,0 t1 t2 t2
0,0,1 t1 t1 t1
1,1,1 t1 t1 t2

imperfect load balance it may be possible to reduce the allocated
time slices using another binary search. The upper bound for ev-
ery tile t ∈ T is equal to the slice found in the previous step (i.e.
ωt) and the lower bound for every tile t is

⌊

lp(t) ·ωt/maxt∈T lp(t)
⌋

which takes into account the relative load of each tile. The binary
search is continued till the slices can no longer be reduced without
violating the throughput constraint.

10. EXPERIMENTAL RESULTS
10.1 Experimental setup

A benchmark is needed to evaluate the run-time and quality of
the resource allocation strategy and explore the impact of different
parameter values in the tile-cost function. A benchmark of four
ordered sets of application graphs was generated using SDF3 [22].
The first set contains processing intensive graphs that have large ex-
ecution times, do not communicate too often and have small token
sizes and states. The second and third set are memory and com-
munication intensive. The fourth set contains both SDFGs which
are balanced wrt their processing, memory and communication re-
quirements and graphs which are dominated by one or two of these
aspects. For each set, 3 different sequences of graphs were gener-
ated to eliminate effects from the random generator.

Three different architecture graphs are used in the experiments.
Each architecture graph is a 3x3 mesh-based architecture with 3
different types of processors. The graphs differ in the memory
size and number of supported connections. All processors have
an equally sized time wheel. The connections between the tiles are
assigned a latency which is small compared to the execution time
of the actors. This is realistic as the latency of an interconnect in an
MP-SoC is typically much smaller than the execution time of the
executed tasks.

Each set of graphs from our benchmark has been tested with five
different settings for the tile-cost function (see first column Tab.
4). For a given tile-cost function, architecture graph, and sequence
of application graphs, resources are allocated to application graphs
till no valid resource allocation is found for a graph. This gives
a conservative estimate on the number of applications for which
resources can be allocated on the platform. A design-time pre-
processing step that orders the applications to optimize the order
in which they are handled, a (run-time) mechanism that rejects an
application and continues with the next one or another implemen-
tation version of the rejected application, and/or a platform dimen-
sioning step may improve the results.

10.2 Experiments on the benchmark
Tab. 4 shows the number of application graphs which could be

bound for each tile-cost function and set of graphs from the bench-
mark. It averages over the 3 sequences of graphs contained in each
set and the 3 architecture graphs used in the experiments. The aver-
age run-time of the strategy for a single application graph on a P4 at
3.4GHz is 5 seconds. On average, each run of the algorithm invokes
16.1 times the throughput computation technique described in Sec.
8 which would make a trajectory based on a conversion to HSDFG
very expensive. The result of the set with computation intensive
tasks (set 1) shows that it is important to consider not only the pro-
cessing (1st tile-cost function), but also the communication (3rd
tile-cost function). The reason for this is that when the processing
load is balanced, many dependency edges are bound to a connec-
tion, requiring synchronization between tiles. As a result, larger
time slices need to be allocated on the tiles to meet the throughput
constraint than when more actors of a single application are bound
to the same tile. The latter effect is achieved by the 3rd tile-cost
function. As expected, the 2nd tile-cost function, which considers

Table 4: Average number of application graphs bound.
c1,c2,c3 set 1 set 2 set 3 set 4

1: 1,0,0 20.22 5.22 7.56 18.56
2: 0,1,0 18.78 8.00 11.33 23.33
3: 0,0,1 29.22 7.56 12.89 25.00
4: 1,1,1 18.44 6.50 10.33 23.56
5: 0,1,2 24.56 8.00 12.89 30.11

Table 5: Resource efficiency for set 4.
timewheel memory connections input bw output bw

1: 0.71 0.82 0.88 0.83 0.70
2: 0.85 0.93 1.00 1.00 1.00
3: 0.72 0.82 0.67 0.47 0.67
4: 0.96 0.98 1.00 0.94 0.79
5: 1.00 1.00 0.94 0.72 0.92

the memory resources, performs best on the memory constrained
graphs (set 2). Similarly, the 3rd tile-cost function, which consid-
ers the connection and bandwidth resources, performs best on the
communication intensive graphs (set 3). The results show further
that the 4th tile-cost function, which considers all resources, gives
an average result for all sets. This is to be expected as it balances all
resources and as such does not give priority to the most constrained
resource in any of the sets. The results show that it is important
to minimize the number of connections in order to limit the syn-
chronization overhead. They also show that balancing the memory
usage is an important secondary objective as the 2nd tile-cost func-
tion gives good results for most sets. Based on these observations,
we devised a 5th tile-cost function (0,1,2) emphasizing minimiza-
tion of the number of connections while balancing memory usage.
Using this cost function, the largest number of application graphs
is allocated onto the architecture for the set with mixed resource
requirements (set 4). This shows that it is possible to guide the
resource allocation through our tile-cost function.

The objective of the resource allocation strategy is to perform re-
source allocation for as many graphs as possible while keeping the
total amount of resources used as low as possible. Tab. 5 shows the
resource usage after resource allocation for the graphs from the 4th
set. For comparison, the resource usage of each resource is normal-
ized wrt the largest usage of this resource when using any of the 5
tile-cost functions. The results show that the 3rd tile-cost function
achieves a good result by allocating a large number of applications
(see Tab. 4) to the smallest amount of resources. It also shows
that the 5th tile-cost function, which allocates the largest number
of applications to the architecture, effectively uses the available re-
sources. These results confirm that communication has a major
impact on resource usage. This is as expected because we do not
assume any synchronization between time wheels, meaning that
communication has a large impact on the guaranteed throughput
that can be obtained. Communication needs to be balanced by al-
location of large time slices on the communicating processors. The
table also shows that for all tile-cost functions the resource occu-
pancy of the various resources is similar, indicating that all cost
functions give a balanced resource utilization.

When doing resource allocation using the 5th tile-cost function
on the graphs from the 4th set of our benchmark, we found that on
average 73% of the resources in the architecture graphs are used.
This result is reasonable because it is achieved without any opti-
mizations. Resource utilization can be increased when doing sys-
tem dimensioning, re-ordering applications before allocation and/or
applying mechanisms to transform applications or to continue allo-
cating applications after one application fails to be bound.

10.3 Experiments on a multimedia system
Besides the synthetic graphs, a multimedia system consisting of

three H.263 decoders (each 4 actors) and an MP3 decoder (13 ac-
tors) is used. The four application graphs are bound and scheduled
on a 2x2 mesh with 2 generic processors and 2 accelerators. The
used tile-cost function (2,0,1) focuses on balancing the processing
load and it tries to limit the communication. The memory usage
is ignored as all potential bindings have similar memory require-
ments. The strategy finds a resource allocation with a balanced

resource utilization. The run-time of the strategy is 8 minutes of
which approx. 90% is spent on the time slice allocation. The time
slice allocation step performs 34 times a throughput computation
in order to minimize the slices used by the applications. Resource
allocation techniques that convert the SDFG to an HSDFG and
compute throughput on the HSDFG would take several hours when
performing a similar amount of throughput checks. (Recall that
one throughput computation for the H.263 decoder takes in that
case 21 minutes.) This experiment shows that our resource alloca-
tion strategy can handle SDFGs whose corresponding HSDFGs are
large (14275 actors) within a limited run-time. It also shows that
through a combination of modeling resource allocation decisions
in the SDFG (as proposed e.g. in [2, 6]) and by constraining the ex-
ecution of the graph it becomes feasible to analyze the throughput
of realistic applications when bound to a heterogeneous MP-SoC.

11. CONCLUSIONS
We have presented the first resource allocation strategy that can

bind multiple SDFGs to a heterogeneous multi-processor system
while giving throughput guarantees to each individual application,
also in a context of resource sharing. The technique can deal with
multi-rate and cyclic dependencies between actors (tasks) without
converting it to a homogeneous SDFG. The strategy uses generic
cost-functions to steer the binding of the application to the architec-
ture and incorporates an efficient technique to compute the through-
put of a bound and scheduled SDFG. The experiments show that
this enables a balanced resource allocation of time-constrained ap-
plications bound to a multi-processor system-on-chip.

12. REFERENCES
[1] B. ACKLAND, ET AL. A single chip 1.6 billion 16-b MAC/s multiprocessor

DSP. IEEE Journal of Solid-State Circuits 35, 3 (2000), p. 412–424.
[2] N. BAMBHA, ET AL. Intermediate representations for design automation of

multiprocessor DSP systems. Design Automation for Embedded Systems 7, 4
(2002), p. 307–323.

[3] M. BEKOOIJ, ET AL. Predictable multiprocessor system design. In
SCOPES’04, Proc. (2004), Springer, p. 77–91.

[4] M. BEKOOIJ, ET AL. Dynamic and Robust Streaming In and Between
Connected Consumer-Electronics Devices. Springer, 2005, ch. Dataflow
Analysis for Real-Time Embedded Multiprocessor System Design, p. 81–108.

[5] S. BHATTACHARYYA, ET AL. Software Synthesis from Dataflow Graphs.
Kluwer Academic Publishers, 1996.

[6] G. BILSEN, ET AL. Cyclo-static dataflow. IEEE Trans. on signal processing 44,
2 (1996), p. 397–408.

[7] D. CULLER, ET AL. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann, 1999.

[8] C. ERBAS, ET AL. Multiobjective optimization and evolutionary algorithms for
the application mapping problem in multiprocessor system-on-chip design.
IEEE Trans. on Evolutionary Computation 10, 3 (2006), p. 358–374.

[9] O. GANGWAL, ET AL. Dynamic and Robust Streaming In and Between
Connected Consumer-Electronics Devices. Springer, 2005, ch. Building
Predictable Systems on Chip: An Analysis of Guaranteed Communication in
the AEthereal Network on Chip, p. 1–36.

[10] A. GHAMARIAN, M. GEILEN, S. STUIJK, T. BASTEN, A. MOONEN,
M. BEKOOIJ, B. THEELEN, AND M. MOUSAVI. Throughput analysis of
synchronous data flow graphs. In ACSD’06, Proc. (2006), IEEE, p. 25–34.

[11] J. HU AND R. MARCULESCU. Energy- and performance-aware mapping for
regular noc architectures. IEEE Trans. on CAD 24, 4 (2005), p. 551–562.

[12] K. KUCHCINSKI. Constraint-driven scheduling and resource assignment. ACM
Trans. on Design Automation of Electronic Systems 8, 3 (2003), p. 355–383.

[13] E. LEE, ET AL. Static scheduling of synchronous data flow programs for digital
signal processing. IEEE Transactions on Computers 36, 1 (1987), p. 24–35.

[14] A. MOONEN, ET AL. Timing analysis model for network based multiprocessor
systems. In Progress’04, Proc. (2004), STW, p. 122–130.

[15] O. MOREIRA, ET AL. Multiprocessor resource allocation for hard-real-time
streaming with a dynamic job-mix. In RTAS, Proc. (2005), IEEE, p. 332–341.

[16] P. MURTHY. Scheduling Techniques for Synchronous Multidimensional
Synchronous Dataflow. PhD thesis, UC Berkeley, 1996.

[17] P. PAULIN, ET AL. Application of a multi-processor SoC platform to
high-speed packet forwarding. In DATE’04, Proc. (2004), IEEE, p. 58–63.

[18] P. POPLAVKO, ET AL. Task-level Timing Models for Guaranteed Performance
in Multiprocessor Networks-on-Chip. In CASES, Proc. (2003), ACM, p. 63–72.

[19] M. RUTTEN, ET AL. A heterogeneous multiprocessor architecture for flexible
media processing. IEEE Design & Test of Computers 19, 4 (2002), p. 39–50.

[20] S. SRIRAM AND S. BHATTACHARYYA. Embedded Multiprocessors:
Scheduling and Synchronization. Marcel Dekker, 2000.

[21] S. STUIJK, M. GEILEN, AND T. BASTEN. Exploring trade-offs in buffer
requirements and throughput constraints for synchronous dataflow graphs. In
DAC’06, Proc. (2006), ACM, p. 899–904.

[22] S. STUIJK, M. GEILEN, AND T. BASTEN. SDF3 : SDF For Free. In ACSD’06,
Proc. (2006), IEEE, p. 276–278.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=826824
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=826824
http://www.springerlink.com/index/H6658V2285679465.pdf
http://www.springerlink.com/index/H6658V2285679465.pdf
http://www.springerlink.com/index/13U1DK50RR46MF0R.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=485935
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1637693
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1637693
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1640221
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1640221
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1411933
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1411933
http://doi.acm.org/10.1145/785411.785416
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1388399
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1388399
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1269203
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1269203
http://doi.acm.org/10.1145/951710.951721
http://doi.acm.org/10.1145/951710.951721
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1018132
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1018132
http://doi.acm.org/10.1145/1146909.1147138
http://doi.acm.org/10.1145/1146909.1147138
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1640245

