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1. INTRODUCTION  
Mobile, intelligent devices that are able to deliver communication 
services and multimedia content anytime, anywhere are the 
dominant players in the field of embedded systems. These systems 
combine many different streaming applications (e.g., H.264-AVC, 
JPEG2000, WiMax) in a single system. The basic characteristic of 
these applications are typically large computational requirements 
and intensive data transfer and storage needs. As a result, the 
primary platform for such applications is Multiprocessor Systems-
on-Chip (MPSoCs). These MPSoCs can deliver the computational 
power required by novel applications. Modern MPSoCs contain a 
complex memory hierarchy that allows applications to meet their 
data transfer and storage requirements. However, it brings the 
additional challenge to the system designers to efficiently map 
applications onto processors and memories. The design choices 
have a large impact on the energy consumption and memory 
footprint of the final system. This in the end has a direct impact on 
the system cost and the battery lifetime of the system, i.e., the user 
experience. 

The basic constraints for MPSoC mapping can be categorized as 
follows:  

• Parallelization of the sequential application code.  

• Optimization of the static and dynamic data structures for 
efficient and intelligent utilization of the memory hierarchy.   

• Mapping of the parallelized source code onto the 
computational and storage resources available in the MPSoC 
platform.  

The MNEMEE project [1] addresses the aforementioned 
challenges by introducing a novel tool flow that integrates several 
state-of-the-art source-to-source optimization methodologies and 
tools. It provides a methodology to automatically parallelize the 
source code of an application. It also optimizes the static and 
dynamic data structures in the source code such that they can 
efficiently use the memory hierarchy in an MPSoC. Finally, the 
tool flow maps the parallelized source code onto the processors 
and memories in an MPSoC. Many of the methodologies that are 
used in the tool flow are based on multi-objective exploration 
strategies. This allows designers to make design trade-offs and it 
makes product customization at design-time much easier. The 
MNEMEE tool flow provides a completely automated trajectory 
to map sequential applications onto an MPSoC while exploiting 
its memory hierarchy. The primary objective is to reduce the 
energy consumption and design-time of the new embedded 
system. 

2. MNEMEE TOOLFLOW 
The MNEMEE tool flow is shown in Figure 1. The flow takes 
sequential C source code of an application as input. In several 
steps it parallelizes and optimizes this C code for implementation 
onto an MPSoC. 

 
Figure 1 - MNEMEE tool flow 

The first step optimizes, based on the access pattern, the dynamic 
data structures in the original source code. It changes the 
implementation of all dynamic data structures like dynamic 
arrays, linked lists and trees, based on the Dynamic Data Type 
Refinement (DDTR) methodology [2]. The parallelization tool [3] 
receives as input the sequential source code that has already been 
optimized in step 1. Step 2 must decide how the sequential 
application source code will be parallelized. It uses an integer 
linear programming (ILP) based approach to partition the 
application into several concurrently executed tasks. Step 3 
implements this parallelization, i.e., it transforms the source code. 
The result of the optimization is a transformed parallelized 



application with data copies and block transfers explicitly 
expressed in the source code, automatic handling of 
synchronization of data, and a mapping of the data and copies to 
the various memory layers [4]. Step 4 performs a similar 
optimization on the dynamic data structures. The next step maps 
the parallelized application onto the processors and memories in 
the MPSoC. For the mapping step, the toolflow offers two 
alternatives. The user can exploit the dynamic behavior of an 
application in order to save resources using the scenario-aware 
mapping techniques [5]. Alternatively, the main objective for 
mapping could be to optimize the energy consumption of the 
memory subsystem by opting for the memory-aware mapping. 
The scratchpad memory allocation tool (step 6) is the last step in 
the MNEMEE tool flow. It finalizes the mapping decisions for the 
data objects that are used in the application. Earlier tools have 
provided hints on the mapping of the data structures onto the 
memories.  The step can take full advantage of all mapping 
decisions and optimizations performed in earlier steps of the flow. 
The tool flow combines a large number of different tools in a 
single framework. To achieve the required level of integration, the 
tool flow has been build using an existing compiler development 
framework, ICD-C, in combination with the MACC framework. 
The latter framework offers a structured method to integrate 
different optimization and analysis tools. This framework was 
partially developed in this project [6]. Furthermore, a graphical 
user interface was developed to enhance the usability of the tool 
flow. 
Since every step of the tool flow is fully automated, it enables the 
designer to perform an optimal non-overlaying memory allocation 
with almost no effort while significantly reducing the design time 
for embedded systems. 

3. USE CASES FOR INDUSTRY 
The evaluation of an automated toolflow can only be successfully 
evaluated by actual use of it in an industrial setup. For the 
MNEMEE toolflow, it has been evaluated through the 
development of two industrial partners for different target 
application domains, namely multimedia and communications. 
Both examples demonstrate the integration of the MNEMEE tools 
into their design flow, emphasizing the automation achieved. 

Thales Communications, France (TCF)’s targeted application is 
based on NATO standard STANAG 4591 implementing the 
enhanced Mixed Excitation Linear Predictive (MELPe) algorithm 
at 2400, 1200 and 600 bit/sec. The speech signal is sampled at 8 
kHz. At 2400bits/s, the frame length of the input signal is 22.5 ms, 
where at 1200 bits/sec and 600 bits/sec three and four consecutive 
frames (respectively) are grouped into a super-frame. The 
resulting super-frame is jointly quantized to obtain high coding 
efficiency. The targeted functionality is an integrated real-time 
solution of the different modes allowing dynamic switches 
between the different rates on the selected hardware platform. The 
target platform is an OMAP L137 provided by Texas Instrument 
which is a heterogeneous MPSoC with an ARM processor and a 
DSP. 

In the framework of MNEMEE, Intracom Telecom (ICOM) 
targets the IEEE 802.16e system, widely known as Mobile 
WiMAX. IEEE 802.16e is a broadband wireless solution that 
enables convergence of mobile and fixed broadband networks 
through a common wide-area broadband radio access technology 
and flexible network architecture. With a fast air link, its 
asymmetric downlink/uplink capability, a fine resource 

granularity and a flexible resource allocation mechanism, Mobile 
WiMAX is designed to meet QoS requirements for a wide range 
of data services and applications. The selected platform for 
Intracom is MSC8144 processor, a high-performance multicore 
DSP from Freescale that targets wireline and wireless 
infrastructure applications. This multicore DSP combines four 
fully-programmable StarCore™ DSP cores, each running at up to 
1 GHz with an architecture highly optimized for voice, fax, video, 
and data compression processing. An internal QUICC 
Engine™ dual-RISC packet-processor supports multiple 
networking protocols to guarantee reliable data transport over 
packet networks while significantly offloading such processing 
from the DSP cores.  

Henceforth, both homogeneous and heterogeneous MPSoC 
platforms were used for the MNEMEE toolflow evaluation. Also, 
the different nature of application domain helped to look at both 
functional and data-level parallelization.   

3.1 Experimental Results 
For TCF, optimization tools as designed and developed within 
MNEMEE project are of great importance in order to fully benefit 
from emerging MPSoC architectures. If it remains a challenge to 
provide a fully automated optimization tool flow with optimal 
performance, the results obtained within MNEMEE demonstrate 
that a significant step has been achieved. In the case of ICOM, 
participation in the MNEMEE project enabled the company to 
have early access to innovative technology that can have a real 
impact in the design of contemporary complex embedded 
systems. The benefits offered by the tools have been evaluated 
using the platform described earlier. In some cases, designers had 
to use analytical models to estimate energy consumption as those 
numbers were not directly available from the platform. The 
evaluation showed significant gains in design time, memory 
bandwidth, memory footprint, and energy consumption as 
summarized in Table 1. The benefits observed were dependent on 
the applications as well as the platform used. The details of the 
results are available in the project homepage [1]. 

Table 1: Summary of results for use-cases 

 TCF ICOM 

Memory Footprint 30 % ~1% 

Memory Bandwidth No gain 17% 

Energy Consumption 52 % Not measurable 

Design Time 76 % 38% 
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