
Data Flow Modeling of Radio
 Applications

Orlando Moreira
Principal DSP Systems Engineer

Multi-Radio Devices

2
WLAN Base station

3/4G Base station
HSPA MULTI-RADIO

USER
EQUIPMENT

GPS Satellite

2G Base station
GSM

SDR Vision: The Radio Computer

Digital Domain,
Real-Time

•  Hardware virtualization and Runtime Resource Management
•  RATs are developped in isolation, delivered independently
•  RATs run simultaneously

Application: Radio PHY features

• Hard-real time: throughput, end-to-end latencies

•  must conform to standards, pass certification tests

• Iterative schedules with overlapped execution

• Inter-iteration dependencies

• Periodic or sporadic external sources

background motivation variants results conclusion

Hardware: Modem Platform

SDR Software Architecture: The Problem

"   Platform: Heterogeneous Multiprocessor

"   Application: Multiple RATs simultaneously active
–  different rates of operation

–  unpredictable start/stop times

"   Requirement: provide Real-Time guarantees
–  RATs must meet end-to-end latency, throughput requirements

"   Software Architecture must
–  provide power-efficient, real-time schedules

–  support widest variety of RAT/mode combinations and transitions

–  allow post-design updates and add-ons

–  simplify the RAT design process

7

Our requirements at a glance
"   Real-time:

"   Automated analysis: throughput, end-to-end latencies

"   Hard real-time guarantees, no scheduling anomalies, no deadlocks, no buffer overruns.

"   Ease of Programming/Testing/Debugging:

"   Correct-by-contruction concurrent behavior

"   Automated generation of code for communication, synchronization, task schedule

"   Efficiency:

"   (Quasi) Static Order scheduling per RAT/Processor.

"   Optimized static determination of buffer sizes

"   Distributed Runtime Synchronization (data triggered)

"   The “Magic Bullet”:

"   Data Flow app modeling + Data Flow execution model+ Budget schedulers

"   using a homegrown flavour of data flow customized for radio

8

Where does unpredictable behavior come from?

"   Application:

"   Non-deterministic functional behavior (eg: thread model)

"   Dynamism (data-dependent behavior)

"   Results in: undetectable deadlocks, unbounded memory requirements, halting problem

"   Solution: Restrict programming model

"   Suiting the domain: must find the right trade-off between expressivity and analyzability

"   Platform:

"   Resource contention

"   Unbound time to service from resource or high discrepancy between average and
 worst case

"   Results in: Starvation, Resource Locking, Scheduling anomalies

"   Solution: Budgeted arbitration

"   schedulers with service guarantees in all share points

Data Flow formalism

Src D B C Snk

E F

A

Temporal Analysis (for Static variants: SDF, CSDF):
Longest cycle bounds maximum rate.
Execution in bounded buffer space.
There is always a static periodic schedule that achieves maximum rate
Self timed execution is always upper bounded by static periodic schedule
Monotonic, Linear in timing: No scheduling anomalies.

Actors: computing stations with well-defined data-driven activation rules
Arcs: FIFO channels
Tokens: Initial data items in Arcs

 Allow the expression of inter-iteration dependencies
For Software Engineers: a concurrent Component Model with strong formal
properties (as opposed to UML)

Data Flow formalism: function + mapping+ analysis

Src D B C Snk

E F

A

Src D B C Snk

E F

A N1 N2 N3 N4 N5

N6
N7

Data flow unifies concurrent application specification & timing analysis of mapping

Programming Model: Specifying Functionality per RAT

Analysis Model: Modeling Mapping Decisions

Modeling of buffer
sizes, static ordering,
communication
overhead.

Scheduling Policy – intra vs inter graph

Intra-graph
•  Dependencies known

•  Dependencies are static or quasi
-static

•  Related Rates of Execution
 between tasks

•  Shared temporal Requirements

Inter-graph
•  No dependencies

•  Independent start, stop, loading

•  Independent Rates

•  Independent Temporal
 Requirement

•  Independent worst-case temporal
 behavior

05/13/09 CONFIDENTIAL

Src1

275000

Src2

12500

DASS

19000

JD1

27500

Src3

100000

MI

42000

CE

33000

Src4

287500

DecCRC1

25000

JD2

15500

DecCRC2

25000

TFCI

2000

TPC

1000

Latency2

285500

Latency3

395000

Latency1

285680

Src1

2400

Src2

800

Detect

220

Hdemode

920

Src3

2400

FFEnCE

680

CFEnSync

355

Src4

1600

Src5

2400

Src7

4000

Src6

4000

HDecode

920

PDemode

920

PDecode

920

MacCRC

500

MacAnalyse

1000

BuildHeader

500

CodeHeader

920

AckCode
AckMode

920

SIFS

16000

ModHeader

920

5:1

5:1

1:5

1:5

SDF model for WLAN

TDS-CDMA Receiver WLAN Receiver

Scheduling Policy – intra vs inter graph

Intra-graph
•  Inter-processor synchronization:

 Self-timed & data-driven

•  Intra-processor:
 Quasi-static order

•  Dependencies known; little dynamism

•  Determined at compile time

•  No context scheduler overhead

Inter-graph
•  Per processor: Budget scheduler

•  Guarantees service time per
 reservation, isolating graph from
 interferences

•  TDM, NPNBRR, PBS, CCSP(?)

•  Global Resource Manager:

•  Reservation of resources, processor
 binding at graph startup

05/13/09 CONFIDENTIAL

A

C

B

D

E

WLAN

TDM Scheduler

A

C

B

D

E

TDM Scheduler

Software Architecture for SDR

Compile-Time (Budgeting)
For each graph

Run-Time (Admission Control)
For each graph start request

Transceiver
Component

Dataflow
Compiler

Transceiver
GraphTransceiver

Component

Architecture
Description

Transceiver
Budget

Relocatable
Executables

Timing
Requirements

Scheduler
SettingsScheduler
Settings

TDM
Scheduler

Executablet

Resource
Manager

Transceiver
Budget

Executables

Current
Resource
Allocation

Scheduler
Settings

TDM
Scheduler

New
Resource
Allocation

TDM
Scheduler

Scheduler
SettingsScheduler
SettingsScheduler
Settings

TDM
Scheduler

TDM
Scheduler

Round-Robin
Scheduler

Loader
Other

schedulers/
arbiters

Compute Static ordering per processor
Buffer sizes, Run-time scheduler settings Perform admission control, actor to

processor binding, load tasks, configure
run-time schedulers

Programming Flow in Detail

Core Compiler

Transceiver
Component

Dataflow
Compiler FETransceiver

Graph

Transceiver
Component Dataflow

Transceiver

Dataflow
Scheduler

Architecture
Description

Timing
Annotation

Timing
Requirements

Quasi-static
clusters

Transceiver
Budget

Code
Generator

Core Compiler

T iming
AnnotationTAnnotationAnnotationEmbedded

OS task

Core compilerCore compilerCore Compiler

Relocatable
Executables

Dataflow
Modeling

Dataflow
Analysis

(Partial)
Tentative
Mapping

Temporal
Analysis
ModelYes or No

Modeling, Analysis, Scheduling
Fully Data Flow Driven
Automatic Model Generation

Dynamic Scheduler Modeling: TDM

A

TDM
Latency-rate server data flow model

P: Period of the TDM scheduler
S(A): Slice allocated to A
T(A) : Worst-case Execution time of A

TDM is a budget scheduler: guaranteed resources per period.
Latency rate model [Wiggers@SCOPES07]: approximation for any starvation-
free scheduler, with varying accuracy, depending on the scheduler.

AL AR

tAL=P-S(A) tAR=P.T(A)/S(A)

DF Modeling: Composition of TDM arbitrations

16

A

C

B

D AR

CL

BL

DL AL

CR

DL

BR

Latency-rate server model can be used for any
starvation-free/budget schedulers.
It can for some cases be rather pessimistic.

4

Data flow Modeling: Problem with the LR-Model

3 12 9 6 18 15

4 5.. 1 3 2.. ..2

1 3 2

PERIOD = 6 SLICE SIZE = 3 EXEC TIME = 2

Fig: The LR-model over-estimates the worst-case
temporal behavior of TDM arbitration by a factor of (P/S)

But do not fear. A model with precise worst-case is on the way!

17

05/13/09 CONFIDENTIAL

Modeling TDM combined with Static Order

AL AR

BL BR

We can compose a data flow analysis for a cluster of statically-ordered actors
that share a slice on a TDM scheduler :

Latency component does not affect local (intra-cluster) communication.

A

TDM

B

05/13/09 CONFIDENTIAL

WLAN Packet structure and processing

Can Static Data flow handle this?
We can manually design a worst case model for analysis…
…But that doesn’t work for specification, DF compilation, code, generation.
It is difficult, time-consuming, error prone…
…And how do we guarantee that the model is correct?

Src1

2400

Src2

800

Detect

220

Hdemode

920

Src3

2400

FFEnCE

680

CFEnSync

355

Src4

1600

Src5

2400

Src7

4000

Src6

4000

HDecode

920

PDemode

920

PDecode

920

MacCRC

500

MacAnalyse

1000

BuildHeader

500

CodeHeader

920

AckCode
AckMode

920

SIFS

16000

ModHeader

920

5:1

5:1

1:5

1:5

SDF model for WLAN

SRDF
(HSDF)

MRDF
(SDF)

CSDF

DDF

BDF

A1
1 1

SRDF

A1
3 2

MRDF

A1’
1 1

CSDF A1’’
2

A1
1 2

BDF

c

3

A1
p m

DDF

1
1 1

q

Non-determinate
merge

The right flavor of data flow: Expressivity

2

SRDF
(HSDF)

MRDF
(SDF)

CSDF

DDF

BDF

Max algebra can be used to
derive properties SRDF graph
•  deadlock free
•  monotonic
• Self-timed behavior bounded by static-
periodic schedule with max rate
• Static periodic schedule can be built
from linear constraints

•  Linear/Convex Programming!

CSDF can be transformed into SRDF
MRDF can be transformed into SRDF

DDF and BDF are Turing complete,
impossible to check even for deadlock
freedom in the general case.

The right flavor of data flow: Analyzability

DF model for Radio: Mode-Controlled Data-flow

Extension of Static Dataflow. Allows (limited) data-dependent behavior.
Properties are similar to Scenario-Aware Data Flow (TUE)
Boolean data flow with strict construction rules & valid control sequences defined

switch
 1 2 3 mc

drop

sync

 1 2 3
 select1

source

dem dec

sink

 1 2 3
select2

acq

DVB-T Receiver
3 Modes: Sync, Decode, Drop

Our Computation model: Mode-Controlled Data-flow

Extension of Static Dataflow. Allows (limited) data-dependent behavior.
Boolean data flow with strict construction rules & valid control sequences defined
"   Analysis: Monotonic, Strict, deadlock analysis, periodic bound per mode exists

"   Based on bounding self timed execution per mode and computing transitions
"   Scheduling: Quasi-static ordering of actors possible, bounded buffers exist

switch
 1 2 3 mc

hdem

sync

 1 2
select

hdec

pdec

source

data
out

pdem

crc

code
ack

mode
ack

send
header

send
payload

shift

2:3
Tunnel 3:4

Tunnel

Quasi-static ordering (extension for MCDF)

Order actors inside a cluster as much as possible at compile-time
The only run-time decision is mode switching
Synchronization among clusters is handled by FIFOs

ARM2

EVP
 ARM1

src

mc
Mode Switch

 1 2 3

sync

hdem

pdem

Mode Switch 2
 2 3

hdec

pdec

shift

sink

S
e
le

c
t

 2

1

mc

hdem
sync

hdec

pdem

shift

 1 2
Mode Select

pdec

src

sink

 1 2 3
Mode Switch

Demonstrator (2009)

Collaboration ST-Ericsson/Nokia/NXP.

HW: Dresden Prototype Board for LTE – 3 ARMs, 2 EVPs

All run-time components implemented, including:

•  Predictable local schedulers;

•  Fifo-based communication and synchronization, self-timed execution

•  Multi-RAT resource manager w/ run-time task and memory mapping

•  EVP code relocation w/ run-time loader.

Best Paper Award SDR Forum 2009.

ARM

SoD
streaming

kernel

BB RM Global RM,
Config

Manager

ARM

SoD
streaming

kernel

Software Architecture - Run-time of Demonstrator

JARM FARM

RTOS

SoD
streaming

kernel

Radio
functions,

MC L1

EVP

SoD
streaming

kernel

Radio
processing
functions

SoD software

PC

Interconnect

Start/Stop Operational State

Status

Start/Stop
 Tasks,

Connect
Tasks

Fifo
Comm

Real-Time

Baseband

SoD NM

Comm
Stubs

(Host, RF)

Fifo
Comm

Conclusions

"   Data flow has many attractive properties as a real-time analysis model for
iterative applications distributed on a multiprocessor

"   Data flow has many attractive properties as a concurrent programming model

"   Budget scheduling is essential for independent analysis and independent
behavior of applications

"   Automatic generation of the analysis model from the implementation code is
essential to automation

"   The right flavor of data flow is domain-specific

Future Scope:

•  Better modal analysis, better modeling, better scheduling techniques

•  Tool maturity

•  Link between data flow language and data flow analysis, language design

Messages:

THANK YOU

