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® Lack of Suitable Abstractions
for Real-Time Systems
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Adding Control over Timing to the ISA
Capability 1: “delay until”

Some possible capabilities in an ISA:

o [C1] Execute a block of code taking at least a
specified time

til
i .

| 1 second | time
| |

.-
| 1 second | time

Where could this be useful?
Finishing early is not always better:
- Scheduling Anomalies (Graham’s anomalies)
- Communication protocols may expect periodic behavior
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Adding Control over Timing to the ISA

Capabilities 2+3: “late” and “immediate miss detection”

o [C2] Conditionally branch if the specified time was
exceeded.

branch_expired

’.
| 1 second | time
| |

o [C3] If the specified time is exceeded during
execution of the block, branch immediately to an
exception handler.

exception_on_expire

e P

| 1 second | time
| |
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Applications of Variants 2+3
“late” and “immediate miss detection”

o [C3] “immediate miss detection”:

Runtime detection of missed deadlines to initiate
error handling mechanisms

Anytime algorithms
However: unknown state after exception is taken

o [C2] “late miss detection”:
No problems with unknown state of system

Change parameters of algorithm to meet future
deadlines

Reineke et al., Berkeley 9



PRET Assembly Instructions
Supporting these Four Capabilities

set _time %r, <val>

— loads current time + <val> into %r
delay_until %r

— stall until current time >= %r

branch_expired %r, <target>

— branch to target if current time > %r
exception_on_expire %r, <id>

— arm processor to throw exception <id> when current time > %r

deactivate exception <id>
— disarm the processor for exception <id>
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Assembly Code

[C1] Delay until:

set timeri, 1s
// Code block
delay _until r1

[C3] Immediate miss detection

set timeri, 1s
exception_on_expire r1, 1
// Code block
deactivate_exception 1
delay _until r1

Controlled Timing in

[C2] Late miss detection

set _timeri, 1s

// Code block
branch_expired r1, <target>
delay_until r1
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MTFD — Meet the F(inal) Deadline

o Capability [C1] ensures that a block of
code takes at least a given time.

o [C4] “MTFD”: Execute a block of code
taking at most the specified time.

Being arbitrarily “slow” is [C4] Exact execution:

always possible and “easy”. set _time ri1, 1s
// Code block
But what about being “fast”? MTFD r1

delay _until r1
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® Current Timing Verification Process
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C Program
w/ Deadline Compiler
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ﬁ Timing
Analysis

Ptolemy Code
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o Timing is property of ISA

2 (o } 9

The Future Timing Verification Process

Hardware
Realization

-

-

-

o Compiler can check constraints once and for all
o Downside: little flexibility in development of hardware

realizations
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The Future Timing Verification Process:
Flexibility through Parameterization

C Program : Hardware
w/ Deadline @ Compiler ‘3 w @ D
Instructions % Realization
1 1
Parametric T
ﬂ Timing
Analysis J &7

Ptolemy % Code
Model Generator

o ISA leaves more freedom to implementations through
a parameterized timing model

o Compiler generates constraints on parameters which
are sufficient to meet the timing constraints

o Parametric timing analysis is ongoing work
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The Future Timing Verification Process:
Flexibility through Parameterization

C Program - Hardware
i Compiler L

Tﬁ/s?rﬁiﬁgﬂi @ P % @ Realization

Parametric "-u_l
ﬂ Timing
Analysis J &7
% Code
Model Generator

Possible parameters:

o Latencies of different components, such as the
pipeline, scratchpad memory, main memory, buses

o Sizes of buffers, such as scratchpad memories or
caches.
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The Future Timing Verification Process:
@ . L
Flexibility through Parameterization

@Efféﬁrﬂ @ Compiler % @ :eagﬁ;';?igen
Instructions %
Parametric -I"-.
ﬂ Timing
Analysis J &/
=
Model Generator

Challenge: Parameterization should allow for:
o Efficient and accurate parametric timing analysis, and

o Admit a wide variety of cost-efficient hardware
realizations.
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Hardware Realizations:
Challenges to deliver predictable timing

o Pipelining

o Memory hierarchy: Caches, DRAM

o On-chip communication

o I/O (DMA, interrupts)

o Resource sharing (e.g. in multicore architectures)
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First Problem: Pipelining

Instruction decod Execute/ : Write
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from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.
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First Problem: Pipelining
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from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.
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Pipelining: Hazards

Data Hazard (computed branch)

Control Hazard (conditional branch)
IF/ID IDEX EX/MEM MEM/WB
4
)
ADD U le> Brkanch
taken
X Zero? > [
J_» IRe.10
rcld N ()
Instruction| IR 11.15 ' . ;;
M Data
> > U memory M
5 u
& y
16 Sign- 32
extend
Data Hazard (IR)

Data Hazard (Memory read/ALU result)

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.
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Forwarding helps, but not all the time...

LD R1, 45(r2)
DADD R5, Ri, R7
BE R5, R3, RO
ST R5, 48(Re)

Unpipelined  [ERIENVERNEMNUEREMNEREMW

EHREMW
The Dream ERENMN
EHRIEMW
HREMW

EHREMW
F|D Memory Hazard
F|D Data Hazard
IHBEIEMM Branch Hazard
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Our Solution: Thread-interleaved Pipelines

T: EREMNEREMW

LE3 (D | EMIW|FDIE MW,

LSS F D | E MW F D |EMIW|

T4: FIDIEMWIFDIEIMIW|
T5: FIDIEIMIWIFIDIEIMIW|

Each thread occupies only one stage of the pipeline at a time
- No hazards; perfect utilization of pipeline
- Simple hardware implementation (no forwarding, etc.)

Drawback: reduced single-thread performance
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Second Problem: Memory Hierarchy

C Memory ob
a us
Sail c aus Memory I/O devices
| Registers | "
e .
Disk
memory
Register Cache Memory reference
reference reference reference
Size: 500 bytes 64 KB 1GB 1TB
Speed: 250 ps 1ns 100 ns 10 ms

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

* Register file is a temporary memory under program
control.

« Cache is a temporary memory under hardware control.

PRET principle: any temporary memory is under program

control. Reineke et al., Berkeley 25



PRET principles implies Scratchpad in

X
¢ place of cache

registers

Interleaved SRAM DRAM main
pipeline with one scratchpad memory
set of registers shared among
per thread threads
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DRAM Cell

leaks charge = needs to be
refreshed (every 7.8us for
DDR2/DDR3)

therefore “dynamic”
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DRAM Module
Collection of DRAM Devices
* rank = groups of devices
that operate in unison
* Ranks share
data/address/command
DUS
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DRAM Timing Constraints

o DRAM Memory Controllers have to conform to
different timing constraints

o Almost all of these constraints are due to
competition for resources at different levels:

Within the DRAM banks:
rows are sharing sense amplifiers

Within a DRAM device:
sharing of 1/O gating and control logic

Between different ranks:
sharing of data/address/command busses
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PRET DRAM Controller: Exploiting

@,
Internal Structure of DRAM Module
Consists of 4-8 banks in 1-2 ranks
Share only command and data bus, otherwise independent
Partition into four groups of banks in alternating ranks
Cycle through groups in a time-triggered fashion
» Successive accesses to
Rank 0: S ot same group obey timing
constraints
iag Ba” Ba” iag  Reads/writes to different
groups do not interfere
Rank x / ¥ :
1:
an Croun 1 Group 3 Prowdes four
=) (B =) (B /nde,c_)endent and
ko || kit k2 || k3 predictable resources
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General-Purpose DRAM Controller
vs PRET DRAM Controller

General-Purpose Controller PRET DRAM Controller

o Abstracts DRAM as a o Abstracts DRAM as multiple
single shared resource iIndependent resources

o Schedules refreshes o Refreshes as reads:
dynamically shorter interruptions

o Defer refreshes:
Improves perceived latency

o Schedules commands o Follows periodic, time-
dynamically triggered schedule

o “Open page” policy o “Closed page” policy:
speculates on locality access-history independence
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latency [cycles]

Varying Interference:
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—x— 40968 transfers, PRET controller
—o— 1024B transfers, conventional controller
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Conventional DRAM Controller
vs PRET DRAM Controller:
Latency Evaluation

Varying Transfer Size:

—«— Conventional controller n
—o— PRET controller
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transfer size [bytes]
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latency [cycles]

PRET DRAM Controller vs Predator
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—e— Shared Predator BL = 4 w/ refreshes
—6— DL} 4(x): Shared PRET BL = 4 w/ refreshes
—— DL"(z): PRET BL = 4 w/ refreshes

—— DL" (x): PRET BL = 4 w/o refreshes

256

Predator:

» abstracts DRAM as
single resource

e uses standard refresh
mechanism

=» PRET's worst-case
access latency of small
transfers is smaller
than Predator’s

= PRET’s drawback:
memory IS private
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® © = | PTARM Memory Hierarchy

registers

Note inverted memory

Interleaved SRAM DRAM main hierarchy!
pipeline with one scratchpad memory,
set of registers shared among separate banks
per thread threads per thread

Reineke et al., Berkeley 33



Conclusions

o Real-time computing needs real-time abstractions

o Potential for significant improvements in worst-case
performance of some hardware realizations

o For more information on PRET: htp:/chess.eecs.berkeley.edu/pret/

Raffaello Sanzio_da Urbino — The Athen_s S_chool
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