Precision-Timed (PRET) Machines

Stephen A. Edwards Columbia University
Sungjun Kim Columbia University
Edward A. Lee UC Berkeley

Ben Lickly UC Berkeley

Isaac Liu UC Berkeley

Hiren D. Patel University of Waterloo

Jan Reineke <speaker>  UC Berkeley

Designing Next-Generation Real-Time Streaming Systems
Tutorial at ESWEEK 2011
Taipei, Taiwan, October 9th, 2011




® Current Timing Verification Process

C . Hardware
=) | Compiler | &) = Realization
Ptolemy Code Timing E WCET

% Generator E> Analysis

Reineke et al., Berkeley 2



® Current Timing Verification Process

C . Hardware
=) | Compiler | = Realization
Y 2

Ptolemy Code Timing :"> WCET
% Generator E> Analysis

o New Architecture =

New Analysis & Boeing:
40 years

Recertification supply of
o For modern architectures:

Extremely time-consuming,
costly and error-prone

Reineke et al., Berkeley 3



® Lack of Suitable Abstractions
for Real-Time Systems

Higher-level Model of Computation

Code
Generation
C-level Programming Language
Abstracts fr 9 Compiiation
execution ti —> | Instruction Set Architecture (ISA)
; Execution

Incr easmgly Hardware Realizations
“unpredictable”

Reineke et al., Berkeley 4



Agenda of this PRET (and this
presentation)

Higher-level Model of Computation
J P Code
Generation

C-level Programming Language
Endow with temporal > Compilation
semantics and control _ ,
over timing ™ Instruction Set Architecture (ISA)
Development of the 9 Execution
PTARM, a predictable =2 | Hardware Realizations

hardware realization

Reineke et al., Berkeley 5



Agenda of this PRET (and this
presentation)

Higher-level Model of Computation
J P Code
Generation

C-level Programming Language
Endow with temporal > Compilation
semantics and control _ ,
over timing ™ Instruction Set Architecture (ISA)
Development of the 9 Execution
PTARM, a predictable =2 | Hardware Realizations

hardware realization

Reineke et al., Berkeley 6



Adding Control over Timing to the ISA
Capability 1: “delay until”

Some possible capabilities in an ISA:

o [C1] Execute a block of code taking at least a
specified time

til
i .

| 1 second | time
| |

.-
| 1 second | time

Where could this be useful?
Finishing early is not always better:
- Scheduling Anomalies (Graham’s anomalies)
- Communication protocols may expect periodic behavior

Reineke et al., Berkeley 7



Adding Control over Timing to the ISA

Capabilities 2+3: “late” and “immediate miss detection”

o [C2] Conditionally branch if the specified time was
exceeded.

branch_expired

’.
| 1 second | time
| |

o [C3] If the specified time is exceeded during
execution of the block, branch immediately to an
exception handler.

exception_on_expire

e P

| 1 second | time
| |

Reineke et al., Berkeley 8



Applications of Variants 2+3
“late” and “immediate miss detection”

o [C3] “immediate miss detection”:

Runtime detection of missed deadlines to initiate
error handling mechanisms

Anytime algorithms
However: unknown state after exception is taken

o [C2] “late miss detection”:
No problems with unknown state of system

Change parameters of algorithm to meet future
deadlines

Reineke et al., Berkeley 9



PRET Assembly Instructions
Supporting these Four Capabilities

set _time %r, <val>

— loads current time + <val> into %r
delay_until %r

— stall until current time >= %r

branch_expired %r, <target>

— branch to target if current time > %r
exception_on_expire %r, <id>

— arm processor to throw exception <id> when current time > %r

deactivate exception <id>
— disarm the processor for exception <id>

Reineke et al., Berkeley 10



Assembly Code

[C1] Delay until:

set timeri, 1s
// Code block
delay _until r1

[C3] Immediate miss detection

set timeri, 1s
exception_on_expire r1, 1
// Code block
deactivate_exception 1
delay _until r1

Controlled Timing in

[C2] Late miss detection

set _timeri, 1s

// Code block
branch_expired r1, <target>
delay_until r1

Reineke et al., Berkeley 11



MTFD — Meet the F(inal) Deadline

o Capability [C1] ensures that a block of
code takes at least a given time.

o [C4] “MTFD”: Execute a block of code
taking at most the specified time.

Being arbitrarily “slow” is [C4] Exact execution:

always possible and “easy”. set _time ri1, 1s
// Code block
But what about being “fast”? MTFD r1

delay _until r1

Reineke et al., Berkeley 12



® Current Timing Verification Process

. Hard
| compler | @ { o 3 R:;,i;;?igenm
|
0 Y 2

Ptolemy Code Timing |E:> WCET
% Generator E> Analysis

=

o New Architecture =
Recertification

o Extremely time-consuming
and costly

Reineke et al., Berkeley 13



C Program
w/ Deadline Compiler
Instructions
ﬁ Timing
Analysis

Ptolemy Code
E> Generator l &

o Timing is property of ISA

2 (o } 9

The Future Timing Verification Process

Hardware
Realization

-

-

-

o Compiler can check constraints once and for all
o Downside: little flexibility in development of hardware

realizations

Reineke et al., Berkeley 14



The Future Timing Verification Process:
Flexibility through Parameterization

C Program : Hardware
w/ Deadline @ Compiler ‘3 w @ D
Instructions % Realization
1 1
Parametric T
ﬂ Timing
Analysis J &7

Ptolemy % Code
Model Generator

o ISA leaves more freedom to implementations through
a parameterized timing model

o Compiler generates constraints on parameters which
are sufficient to meet the timing constraints

o Parametric timing analysis is ongoing work

Reineke et al., Berkeley 15




The Future Timing Verification Process:
Flexibility through Parameterization

C Program - Hardware
i Compiler L

Tﬁ/s?rﬁiﬁgﬂi @ P % @ Realization

Parametric "-u_l
ﬂ Timing
Analysis J &7
% Code
Model Generator

Possible parameters:

o Latencies of different components, such as the
pipeline, scratchpad memory, main memory, buses

o Sizes of buffers, such as scratchpad memories or
caches.

Reineke et al., Berkeley 16



The Future Timing Verification Process:
@ . L
Flexibility through Parameterization

@Efféﬁrﬂ @ Compiler % @ :eagﬁ;';?igen
Instructions %
Parametric -I"-.
ﬂ Timing
Analysis J &/
=
Model Generator

Challenge: Parameterization should allow for:
o Efficient and accurate parametric timing analysis, and

o Admit a wide variety of cost-efficient hardware
realizations.

Reineke et al., Berkeley 17



Agenda of this PRET (and this
presentation)

Higher-level Model of Computation
J P Code
Generation

C-level Programming Language
Endow with temporal > Compilation
semantics and control _ ,
over timing ™ Instruction Set Architecture (ISA)
Development of the 9 Execution
PTARM, a predictable =2 | Hardware Realizations

hardware realization

Reineke et al., Berkeley 18



Hardware Realizations:
Challenges to deliver predictable timing

o Pipelining

o Memory hierarchy: Caches, DRAM

o On-chip communication

o I/O (DMA, interrupts)

o Resource sharing (e.g. in multicore architectures)

Reineke et al., Berkeley 19



First Problem: Pipelining

Instruction decod Execute/ : Write
Instruction fetch nsUchon fecz ef address Memory o fi :
> M
u
™ x
NPC :
; Zero? Branch cond ;
4 : ;> Zero? e on
~IpC - i . ()
T u
Instruction E f : - > > X :
Registers L :
memory R : 9 x ALU ]| =
] M ™ output | :
' 'i > u : Data | | \MD |— M
X memory E u
_/ : y
16 Sign_ 32 -
extend Imm

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

Reineke et al., Berkeley 20



First Problem: Pipelining

PC

IFAD

ID/EX

Instruction
memory

IRg..10

IRq1.15 |

" MEMMWB.IR |ReJSters

MEM/WB

EX/MEM
Branch
Zero? taken > —
N
> M
u
X
N ALU
(M)
> U
—1
Y,

Data
memory M

C

extend

i

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

Reineke et al., Berkeley 21



Pipelining: Hazards

Data Hazard (computed branch)

Control Hazard (conditional branch)
IF/ID IDEX EX/MEM MEM/WB
4
)
ADD U le> Brkanch
taken
X Zero? > [
J_» IRe.10
rcld N ()
Instruction| IR 11.15 ' . ;;
M Data
> > U memory M
5 u
& y
16 Sign- 32
extend
Data Hazard (IR)

Data Hazard (Memory read/ALU result)

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

Reineke et al., Berkeley 22



Forwarding helps, but not all the time...

LD R1, 45(r2)
DADD R5, Ri, R7
BE R5, R3, RO
ST R5, 48(Re)

Unpipelined  [ERIENVERNEMNUEREMNEREMW

EHREMW
The Dream ERENMN
EHRIEMW
HREMW

EHREMW
F|D Memory Hazard
F|D Data Hazard
IHBEIEMM Branch Hazard

Reineke et al., Berkeley 23

The Reality




Our Solution: Thread-interleaved Pipelines

T: EREMNEREMW

LE3 (D | EMIW|FDIE MW,

LSS F D | E MW F D |EMIW|

T4: FIDIEMWIFDIEIMIW|
T5: FIDIEIMIWIFIDIEIMIW|

Each thread occupies only one stage of the pipeline at a time
- No hazards; perfect utilization of pipeline
- Simple hardware implementation (no forwarding, etc.)

Drawback: reduced single-thread performance

Reineke et al., Berkeley 24



Second Problem: Memory Hierarchy

C Memory ob
a us
Sail c aus Memory I/O devices
| Registers | "
e .
Disk
memory
Register Cache Memory reference
reference reference reference
Size: 500 bytes 64 KB 1GB 1TB
Speed: 250 ps 1ns 100 ns 10 ms

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

* Register file is a temporary memory under program
control.

« Cache is a temporary memory under hardware control.

PRET principle: any temporary memory is under program

control. Reineke et al., Berkeley 25



PRET principles implies Scratchpad in

X
¢ place of cache

registers

Interleaved SRAM DRAM main
pipeline with one scratchpad memory
set of registers shared among
per thread threads

Reineke et al., Berkeley 26



DRAM Cell

leaks charge = needs to be
refreshed (every 7.8us for
DDR2/DDR3)

therefore “dynamic”

v

Word line

/

Bit line

L

\ 7= < Capacitor

Transistor

DRAM
Array

Sense Amplifiers
and Row Buffer

What about the main memory?
Dynamic RAM Organization Overview

DRAM Device
Set of DRAM banks +
« Control logic
* /O gating
Accesses to banks can be pipelined,
however I/O + control logic are shared

Control
Logic

Mode

DRAM Bank

= Array of DRAM Cells

+ Sense Ampilifiers and
Row Buffer

Sharing of sense

amplifiers and row buffer

eeeeee

Register

aaaaa

ow Bank
Address
’_[: Mux

| +Daio | | ——===1"
T
|
|
|
|
|
|
|
\
|
|
. |
= | \ | 2
g \ g ' 3
& g :
g \ 3 |I ES
- \ \ i
\ |I .
\ . -
. |
.
‘l o I
\ o2z |
§° ‘Il
gl
|
f
'y A

DRAM Module
Collection of DRAM Devices
* rank = groups of devices
that operate in unison
* Ranks share
data/address/command
DUS

Reineke et al., Berkeley 27



DRAM Timing Constraints

o DRAM Memory Controllers have to conform to
different timing constraints

o Almost all of these constraints are due to
competition for resources at different levels:

Within the DRAM banks:
rows are sharing sense amplifiers

Within a DRAM device:
sharing of 1/O gating and control logic

Between different ranks:
sharing of data/address/command busses

Reineke et al., Berkeley 28



PRET DRAM Controller: Exploiting

@,
Internal Structure of DRAM Module
Consists of 4-8 banks in 1-2 ranks
Share only command and data bus, otherwise independent
Partition into four groups of banks in alternating ranks
Cycle through groups in a time-triggered fashion
» Successive accesses to
Rank 0: S ot same group obey timing
constraints
iag Ba” Ba” iag  Reads/writes to different
groups do not interfere
Rank x / ¥ :
1:
an Croun 1 Group 3 Prowdes four
=) (B =) (B /nde,c_)endent and
ko || kit k2 || k3 predictable resources

Reineke et al., Berkeley 29



General-Purpose DRAM Controller
vs PRET DRAM Controller

General-Purpose Controller PRET DRAM Controller

o Abstracts DRAM as a o Abstracts DRAM as multiple
single shared resource iIndependent resources

o Schedules refreshes o Refreshes as reads:
dynamically shorter interruptions

o Defer refreshes:
Improves perceived latency

o Schedules commands o Follows periodic, time-
dynamically triggered schedule

o “Open page” policy o “Closed page” policy:
speculates on locality access-history independence

Reineke et al., Berkeley 30



latency [cycles]

Varying Interference:

3,000 |

9_3// li '
1,000 |-

11 pwy

| | |
0 0.5 1 1.5 2 2.5 3
Interference [# of other threads occupied]

—o— 4096B transfers, conventional controller
—x— 40968 transfers, PRET controller
—o— 1024B transfers, conventional controller
—a— 1024B transfers, PRET controller

average latency [cycles]

3,000

2,000

1,000

Conventional DRAM Controller
vs PRET DRAM Controller:
Latency Evaluation

Varying Transfer Size:

—«— Conventional controller n
—o— PRET controller

0 1,000 2,000 3,000 4,000

transfer size [bytes]

Reineke et al., Berkeley 31



latency [cycles]

PRET DRAM Controller vs Predator

150

125

100 |

| Private resources in backend ’P

/)

| “Manual” refreshes |

et

—@ @
e
/"

50

25

A4 A4

Hiding refreshes

32

| | | |
128 160 192 224

size of transfer [bytes]

64 96

—e— Shared Predator BL = 4 w/ refreshes
—6— DL} 4(x): Shared PRET BL = 4 w/ refreshes
—— DL"(z): PRET BL = 4 w/ refreshes

—— DL" (x): PRET BL = 4 w/o refreshes

256

Predator:

» abstracts DRAM as
single resource

e uses standard refresh
mechanism

=» PRET's worst-case
access latency of small
transfers is smaller
than Predator’s

= PRET’s drawback:
memory IS private

Reineke et al., Berkeley 32



® © = | PTARM Memory Hierarchy

registers

Note inverted memory

Interleaved SRAM DRAM main hierarchy!
pipeline with one scratchpad memory,
set of registers shared among separate banks
per thread threads per thread

Reineke et al., Berkeley 33



Conclusions

o Real-time computing needs real-time abstractions

o Potential for significant improvements in worst-case
performance of some hardware realizations

o For more information on PRET: htp:/chess.eecs.berkeley.edu/pret/

Raffaello Sanzio_da Urbino — The Athen_s S_chool

e



References

o [CODES ’11] Jan Reineke, Isaac Liu, Hiren D. Patel, Sungjun Kim, Edward A. Lee, PRET
DRAM Controller: Bank Privatization for Predictability and Temporal Isolation, International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
October, 2011.

o [DAC ’11] Dai Nguyen Bui, Edward A. Lee, Isaac Liu, Hiren D. Patel, Jan Reineke, Temporal
Isolation on Multiprocessing Architectures, Design Automation Conference (DAC). June,
2011.

o [Asilomar ’10] Isaac Liu, Jan Reineke, and Edward A. Lee, PRET Architecture Supporting
Concurrent Programs with Composable Timing Properties, in Signals, Systems, and
Computers (ASILOMAR), Conference Record of the Forty Fourth Asilomar Conference,
November 2010, Pacific Grove, California.

o [ICCD ’09] Stephen A. Edwards, Sungjun Kim, Edward A. Lee, Isaac Liu, Hiren D. Patel,
Martin Schoeberl. A Disruptive Computer Design Idea: Architectures with Repeatable Timing,
Proceedings of International Conference on Computer Design (ICCD), IEEE, Lake Tahoe,
CA, 4-7 October, 2009.

o [CASES ’08] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards and
Edward A. Lee, "Predictable Programming on a Precision Timed Architecture." in
Proceedings of International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES), Piscataway, NJ, pp. 137-146, IEEE Press, October, 2008.

o [UCB-TR’08] Hiren D. Patel, Ben Lickly, Bas Burgers and Edward A. Lee, "A Timing
Requirements-Aware Scratchpad Memory Allocation Scheme for a Precision Timed
Architecture," EECS Department, University of California, Berkeley, Technical Report No.
UCB/EECS-2008-115, September 12, 2008.

Reineke et al., Berkeley 35



