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AnalysisAnalysis
Analysis

� �� New Architecture �
New Analysis & 
Recertification

� For modern architectures:

Extremely time-consuming, 
costly and error-prone

Boeing:

40 years 

supply of



Lack of Suitable Abstractions

for Real-Time Systems

Higher-level Model of Computation

C-level Programming Language

Code 

Generation
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Adding Control over Timing to the ISA
Capability 1: “delay until”

Some possible capabilities in an ISA:

� [C1] Execute a block of code taking at least a 

specified time
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Where could this be useful?

- Finishing early is not always better: 

- Scheduling Anomalies (Graham’s anomalies)

- Communication protocols may expect periodic behavior

- …



Adding Control over Timing to the ISA
Capabilities 2+3: “late” and “immediate miss detection”

� [C2] Conditionally branch if the specified time was 

exceeded.
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� [C3] If the specified time is exceeded during 

execution of the block, branch immediately to an 

exception handler.

time1 second

Code block

exception_on_expire



Applications of Variants 2+3
“late” and “immediate miss detection”

� [C3] “immediate miss detection”:

� Runtime detection of missed deadlines to initiate 

error handling mechanisms

� Anytime algorithms

� However: unknown state after exception is taken
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� However: unknown state after exception is taken

� [C2] “late miss detection”:

� No problems with unknown state of system

� Change parameters of algorithm to meet future 

deadlines



PRET Assembly Instructions

Supporting these Four Capabilities 

set_time %r, <val> 

– loads current time + <val> into %r

delay_until %r

– stall until current time >= %r
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branch_expired %r, <target> 
– branch to target if current time > %r

exception_on_expire %r, <id> 
– arm processor to throw exception <id> when current time > %r

deactivate_exception <id> 
– disarm the processor for exception <id> 



Controlled Timing in 
Assembly Code

[C1] Delay until: 

set_time r1, 1s

// Code block

delay_until r1

[C2] Late miss detection  

set_time r1, 1s

// Code block
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delay_until r1 branch_expired r1, <target>

delay_until r1

set_time r1, 1s

exception_on_expire r1, 1

// Code block

deactivate_exception 1

delay_until r1

[C3] Immediate miss detection  



MTFD – Meet the F(inal) Deadline

� Capability [C1] ensures that a block of 

code takes at least a given time.

� [C4] “MTFD”: Execute a block of code 

taking at most the specified time. 
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taking at most the specified time. 

[C4] Exact execution: 

set_time r1, 1s

// Code block

MTFD r1

delay_until r1

Being arbitrarily “slow” is 

always possible and “easy”.

But what about being “fast”?
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The Future Timing Verification Process
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� Timing is property of ISA

� Compiler can check constraints once and for all

� Downside: little flexibility in development of hardware 
realizations

� �
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The Future Timing Verification Process:

Flexibility through Parameterization
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� ISA leaves more freedom to implementations through 
a parameterized timing model

� Compiler generates constraints on parameters which 
are sufficient to meet the timing constraints

� Parametric timing analysis is ongoing work
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Possible parameters:

� Latencies of different components, such as the 
pipeline, scratchpad memory, main memory, buses

� Sizes of buffers, such as scratchpad memories or 
caches.
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Challenge: Parameterization should allow for: 

� Efficient and accurate parametric timing analysis, and

� Admit a wide variety of cost-efficient hardware 
realizations.

� �Ptolemy 

Model

Code 

Generator
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Hardware Realizations:

Challenges to deliver predictable timing

� Pipelining

� Memory hierarchy: Caches, DRAM

� On-chip communication

I/O (DMA, interrupts)
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� I/O (DMA, interrupts)

� Resource sharing (e.g. in multicore architectures)



First Problem: Pipelining
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from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.



First Problem: Pipelining
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from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.



Pipelining: Hazards
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from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.



Forwarding helps, but not all the time…

LD R1, 45( r 2)

DADD R5, R1, R7

BE R5, R3, R0

ST R5, 48( R2)

Unpipelined F D E M W F D E M W F D E M W F D E M W
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Unpipelined F D E M W F D E M W F D E M W F D E M W

F D E M W

The Dream F D E M W

F D E M W

F D E M W

F D E M W

The Reality F D E M W Memory Hazard

F D E M W Data Hazard

F D E M W Branch Hazard



Our Solution: Thread-interleaved Pipelines

T1: F D E M W F D E M W

T2: F D E M W F D E M W

T3: F D E M W F D E M W

T4: F D E M W F D E M W

T5: F D E M W F D E M W

+
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Each thread occupies only one stage of the pipeline at a time
� No hazards; perfect utilization of pipeline

� Simple hardware implementation (no forwarding, etc.)

Drawback: reduced single-thread performance



Second Problem: Memory Hierarchy

Reineke et al., Berkeley 25

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

• Register file is a temporary memory under program 

control.

• Cache is a temporary memory under hardware control.

PRET principle: any temporary memory is under program 

control.



PRET principles implies Scratchpad in 

place of cache
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What about the main memory?

Dynamic RAM Organization Overview

DIMMaddr+cmd  

  data

x16 

Device

x16 

DeviceControl 
DRAM Device

BankWord line

DRAM Device
Set of DRAM banks +

• Control logic
• I/O gating

Accesses to banks can be pipelined, 
however I/O + control logic are shared 

DRAM Cell
leaks charge � needs to be 
refreshed (every 7.8µs for 
DDR2/DDR3)
therefore “dynamic”
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DRAM Timing Constraints

� DRAM Memory Controllers have to conform to 
different timing constraints

� Almost all of these constraints are due to 
competition for resources at different levels:
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� Within the DRAM banks:

rows are sharing sense amplifiers

� Within a DRAM device: 

sharing of I/O gating and control logic

� Between different ranks: 

sharing of data/address/command busses



PRET DRAM Controller: Exploiting 

Internal Structure of DRAM Module

� Consists of 4-8 banks in 1-2 ranks

• Share only command and data bus, otherwise independent

� Partition into four groups of banks in alternating ranks

� Cycle through groups in a time-triggered fashion
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Rank 1:

• Successive accesses to 

same group obey timing 

constraints

• Reads/writes to different 

groups do not interfere

Provides four 
independent and 
predictable resources



General-Purpose DRAM Controller

vs PRET DRAM Controller

General-Purpose Controller

� Abstracts DRAM as a 

single shared resource

� Schedules refreshes 

dynamically

PRET DRAM Controller

� Abstracts DRAM as multiple 

independent resources

� Refreshes as reads:  

shorter interruptions
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dynamically

� Schedules commands 

dynamically

� “Open page” policy

speculates on locality

shorter interruptions

� Defer refreshes: 

improves perceived latency

� Follows periodic, time-

triggered schedule

� “Closed page” policy:  

access-history independence 



Conventional DRAM Controller

vs PRET DRAM Controller: 

Latency Evaluation

Varying Interference: Varying Transfer Size:
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PRET DRAM Controller vs Predator

Predator:
• abstracts DRAM as 

single resource
• uses standard refresh 

mechanism
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� PRET’s worst-case 
access latency of small 
transfers is smaller 
than Predator’s

� PRET’s drawback: 
memory is private



PTARM Memory Hierarchy

Hardware
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Conclusions

� Real-time computing needs real-time abstractions

� Potential for significant improvements in worst-case 

performance of some hardware realizations

� For more information on PRET: 

Raffaello Sanzio da Urbino – The Athens School

http://chess.eecs.berkeley.edu/pret/
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Raffaello Sanzio da Urbino – The Athens School



References

� [CODES ’11] Jan Reineke, Isaac Liu, Hiren D. Patel, Sungjun Kim, Edward A. Lee, PRET 

DRAM Controller: Bank Privatization for Predictability and Temporal Isolation, International 

Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 

October, 2011.

� [DAC ’11] Dai Nguyen Bui, Edward A. Lee, Isaac Liu, Hiren D. Patel, Jan Reineke, Temporal 

Isolation on Multiprocessing Architectures, Design Automation Conference (DAC), June, 

2011.

� [Asilomar ’10] Isaac Liu, Jan Reineke, and Edward A. Lee, PRET Architecture Supporting 

Concurrent Programs with Composable Timing Properties, in Signals, Systems, and 

Reineke et al., Berkeley 35

Concurrent Programs with Composable Timing Properties, in Signals, Systems, and 

Computers (ASILOMAR), Conference Record of the Forty Fourth Asilomar Conference, 

November 2010, Pacific Grove, California.

� [ICCD ’09] Stephen A. Edwards, Sungjun Kim, Edward A. Lee, Isaac Liu, Hiren D. Patel, 

Martin Schoeberl. A Disruptive Computer Design Idea: Architectures with Repeatable Timing, 

Proceedings of International Conference on Computer Design (ICCD), IEEE, Lake Tahoe, 

CA, 4-7 October, 2009.

� [CASES ’08] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards and 

Edward A. Lee, "Predictable Programming on a Precision Timed Architecture," in 

Proceedings of International Conference on Compilers, Architecture, and Synthesis for 

Embedded Systems (CASES), Piscataway, NJ, pp. 137-146, IEEE Press, October, 2008.

� [UCB-TR ’08] Hiren D. Patel, Ben Lickly, Bas Burgers and Edward A. Lee, "A Timing 

Requirements-Aware Scratchpad Memory Allocation Scheme for a Precision Timed 

Architecture," EECS Department, University of California, Berkeley, Technical Report No. 

UCB/EECS-2008-115, September 12, 2008.


