Predictability in the
CoMPSoC platform

CODES+ISSS 2011 tutorial

Benny Akesson

Technische Universiteit
e Eindhoven
University of Technology

Where innovation starts

Trends in MPSoC Design

» Embedded system design gets increasingly complex
— Moore’s law allows increased component integration
— Digital convergence creates a market for highly integrated devices

» Systems are implemented as MPSoC platforms with
— a large number of heterogeneous intellectual property (IP) components
— many concurrently executing applications with real-time requirements

» Pressure to quickly design systems in a cost-effective manner

Verification Problem

» Resource sharing
— Is required to reduce cost
— introduces interference between sharing applications
— makes timing behavior inter-dependent

» Verification is a design bottle-neck
— Verification is often done by simulation of use-cases executing on platform
— Number of use-cases grows exponentially with the number of applications
— System-level simulation is slow, resulting in poor coverage
— Reverification required if an application is added or changes behavior

» Verification is costly and effort is expected to increase in future!

3 Technische Universiteit
e Eindhoven
University of Technology

Formal Verification

» Formal verification is an alternative to simulation
— Provides analytical bounds on latency or throughput
— Verification with mathematical proofs instead of slow simulation
— Covers all inputs and combinations of running applications

» Formal verification requires predictable systems
— Requires timing models of hardware, software, and mapping
— Most industrial systems are not designed with formal analysis in mind

» Efficiency sometimes preferred over predictability
» Platforms rely heavily on unpredictable legacy IP components

4 Technische Universiteit
e Eindhoven
University of Technology

Problem Statement

» Current trends make it increasingly difficult to verify next-generation
real-time streaming systems with fast time to market

» We require a predictable system (hardware + software)
that enables formal verification of real-time applications

» The contributions of this presentation are:
— An introduction to a predictable MPSoC platform
— Three general techniques for predictable system design

— Example uses of techniques in different resources
» Processor tiles, interconnect, and memory tiles

Presentation Outline

Introduction

CoMPSoC overview

Memory tile

Interconnect
Processing tile

Conclusions

6 Techn hU
TU Edh
tyfTh ology

CoMPSoC Overview

» CoOMPSoC is a real-time multi-processor platform
— Supports formal verification using data-flow analysis (predictability)
— Provides complete temporal isolation between applications (composability)

» Components of tiled architecture
— Processing tiles with MicroBlaze cores
— FEthereal network-on-chip
— Memory tiles with SRAM or SDRAM
— Peripheral tiles

» Platform implementations both in
— SystemC for prototyping
— VHDL for FPGA instance

P
Micro Micro Micro
Blaze Blaze Blaze

o
Network—on-Chip ".Display

p
SDRAM ' SRAM l l SRAM '

» Platform supported by an automated design flow

omp

The CoMPSoC Architecture

Timer IMEM DMEM E Timer IMEM DMEM
| | | j | | j
é’ MicroBlaze — — CMEMi i MicroBlaze — — CMEMi . .
% VFCM ' | | it CMEMo VFCM I I | L CMEMo > ProceSS'ng, tile
g o N 5 o — Instruction memory (IMEM)
== | === — Data memory (DMEM)
1 ! | — x | 1 H H i
Shell Shell Shell Shell | Shell Shell Shell Shell - Incomlng Commynlcatlon
S G W G G G S -— Memory (CMEMi)
"m e wmes e@s e ees =-es me == 5 —_ |n mm n| |]
S S i SIU’[QO gg&)ﬂEMu catio
NI NI NI NI emory (0)
g o e o — Voltage and Frequency Control
P L Module (VFGM)
S s - — Remote DMA (RDMA)
NI NI NI
f2 ff 22 2 ZLIL I ., nterconnect
E L, SRR T B TR el
SR GER 0 G 2R B B — Network Interface (NI)
! === » | === — Router (R)
Atomizer Atomizer iAtomizer Atomizer Atomizer Atomizeri — ClOCk Doma|n Crossing (CDC)

w v o \ | \
Delay Delay 3 Delay Delay Delay Delay

| | : | \ | \ |
Data bus 3 Data bus
| | |

SRAM | SDRAM . Video T U Technische Universiteit
; | Eindhoven
b : it il | University of Technology
I

Memory tile(s)
Peripheral tile

Application Model

» An application consists of a set of tasks
— May be distributed over multiple processing tiles
— Tasks may share a processing tile
— Tasks communicate via distributed shared memory

» Applications have a mixed time-criticality Producer Consumer

— Firm real-time applications @__@
» E.g. streaming software-defined radio application ez .

» Failure to satisfy requirement may violate correctness Y
» Modeled as data-flow graphs with latency and/or throughput requirements

— Non-real-time applications

* Any programming model
— E.g. shared memory, KPN, or dynamic data-flow

» Not assumed to be well-specified
» No real-time requirements, but must be perceived as responsive

9 Technische Universiteit
Eindhoven
University of Technology

Predictable Systems

» Execution time (ET)
— The time a request uses a resource before finishing
— Execution of the request on an unshared resource

» Response time (RT)
— Captures effects of resource sharing
— Execution time plus interference from other requestors

» Predictable systems are built from predictable components
— Systems with useful worst-case execution time (WCET) and worst-case
response time (WCRT) for every request on every resource
— E.g. for tasks on processors, and transactions in interconnect and memory

10 Technische Universiteit
e Eindhoven
University of Technology

Enabling Formal Verification

» Benefits of separation of WCET and WCRT

— Considers independent analysis of resource and arbiter
— Analysis covers all combinations of predictable resources and arbiters

» Predictable systems enable formal verification
— Application is a set of requestors for resources with bounded WCRT

— WCRT of requests is used with performance analysis frameworks
« E.g. Data-flow analysis, Real-time calculus, Network calculus

11 Technische Universiteit
e Eindhoven
University of Technology

Presentation Outline

Introduction
CoMPSoC overview
Interconnect
Processing tile

Conclusions

12 Techn hU
TU Edh
tyfTh ology

Predictable SRAM Resource

» Simple SRAMs read/write a random word in a single cycle

» Requests may be large, resulting in long execution times
— Atomizer chops large requests into smaller requests (atoms) of fixed size
— Small responses merged back to expected size

» Execution time of memory depends on other resources
— Complicates analysis

— Make execution independent by securing input data and output space

Buffer atoms completely before making them eligible for scheduling
Decouples memory from production of interconnect and processor

Ensure sufficient space for responses before scheduling atoms
Decouples memory from consumption of interconnect and processor

13 Technische Universiteit
Eindhoven
University of Technology

Predictable Shared SRAM resource

» We have arrived at a predictable SRAM resource
— (Worst-case) execution time of a scheduled atom is constant
— Next challenge is sharing the resource and bound response times

» Some memory clients issue many requests, starving others
— Arbiter is unpredictable, such as FIFO and static-priority arbitration

— Use a budget-scheduler (predictable through resource reservations)
« E.g. Time-Division Multiplexing, Weighted Round Robin, Fair Queuing, and
Credit-Controlled Static-Priority
« Choose arbiter according to WCRT requirements of memory clients

» A predictable arbiter enables response time to be bounded
— Arbiter bounds the number of interfering atoms

— The WCET of SRAM atoms is known and constant, bounding interference
— WCRT = WCET + bounded interference

14 Technische Universiteit
e Eindhoven
University of Technology

Problem with SDRAM

» SDRAM memories are more complicated than simple SRAMs

» The ET of an SDRAM request is highly variable and traffic dependent
— Depends on if target row is open, if read or write, if time to refresh etc.
— WCET is pessimistic and guaranteed bandwidth is very low

* Assumes row miss for every SDRAM burst of 8 words
» Less than 16% bandwidth can be guaranteed for all DDR3 devices

» SDRAM bandwidth is a scarce resource that must be efficiently used
— Additional bandwidth cannot be added due to cost constraints

row buffer
|||||||||||||||l'|'|-

15 Technische Universiteit
e Eindhoven
University of Technology

Predictable Unshared SDRAM Resource

» Restrict memory requests to prevent inefficient accesses
— Larger atoms to amortize overhead of read/write switching and row misses
— Atoms are served non-preemptively due to high preemption cost

» Atoms are mapped to statically computed memory patterns
— Sequences of SDRAM commands computed at design time

— There are five types of patterns
» Read, write, r/w switch, w/r switch, and refresh patterns

| |
cmd [A%T‘NOP‘NOPl D ‘A?T‘NOP‘NOPl BP ‘A%TlNOP‘NOPl RD ‘A%TlNOP‘NOPI R b T T
| | | | | | |

cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 17 18 19 20

Read pattern for DDR2-400

16 Technische Universiteit
Eindhoven
University of Technology

Memory Patterns

» Atom to pattern mapping:
— Read request — read pattern (potentially first w/r switch)
— Write request — write pattern (potentially first r/w switch)
— Refresh pattern issued periodically every 7.8 us

» Patterns abstract SDRAM command scheduling to higher level
— Patterns are easier to schedule and analyze, due to less dependencies
— Moves intelligence from the memory controller to design-time tools

Requests Read Write | Read Read Write

Patterns

ey 0000 0000 JWO0000000JWO000

Time

17 Technische Universiteit
e Eindhoven
University of Technology

Predictable Shared SDRAM Resource

» Memory patterns bound execution times and the guaranteed bandwidth
— Mapping determine worst-case atom to pattern mapping
— ET and transferred data of patterns are known at design time

» Predictable arbitration bounds response times
— Bounds the number of interfering atoms
— Mapping determine worst-case atom to pattern mapping
— ET of interfering patterns are known at design time

» For any combination of supported predictable memory and arbiter
— SRAM, DDR2, DDR3,
LPDDR, LPDDR2

e N 'd B
Resource front-end SDRAM

=
e I ™
WvHas

g)
. SRAM
.| controller

v [}~

WvdS

Configuration Bus
cfg ——])- --------------------- ;

18 — .
[TOM)[FBSP)(cosp) Predictable memories

Latency-rate arbiters

Presentation Outline

Introduction
CoMPSoC overview
Memory tile
Processing tile

Conclusions

19 Techn hU
TU Edh
tyfTh ology

Interconnect Architecture

» Tiles are interconnected using a network on chip

» Network architecture components Sl el |2l
— Protocol shell (Shell) e mmam s O
« converts between parallel bus protocol - - 'T i 7'7 'S
and steaming data s mm mom
NI NI
— Clock domain crossing (CDC) o) T
D -l l- [
— Network interface (NI) ol Ryg R
» (de)packetizes data E T TT
- buffers requests until they can N SN
enter/exit the network - -
— Router (R) Q8- § Rl
« Forwards packets e -
Shell Shell

20 Technische Universiteit
Eindhoven
University of Technology

Predictable Interconnect

» Distributed resource with several arbitration points
— Predictable arbitration per router
— Packets atomized into flits of three words for fine-grained scheduling

» RT is very high if worst-case interference in every arbiter
— Use global arbitration to synchronize arbiters

— Implemented using contention-free pipelined TDM arbitration

Global TDM schedule computed at design time
A flit in the network is scheduled in consecutive TDM slots in all routers

— No buffering required in routers
— All buffers are in network interface, which is cheaper

Requires sophisticated TDM allocation tool
Abstracts distributed resource to a single pipelined resource

21 Technische Universiteit
Eindhoven
University of Technology

Predictable Interconnect

» A global notion of time is required to synchronize TDM slots
— Problem to implement in MPSoC based on a single clock
— We implement notion of time in a distributed fashion
— Everyone handshakes with neighbors before advancing to next slot
— Suitable for asynchronous and mesochronous implementation

» All NIs and routers need to store a TDM table for every link
— Path stored by NI in packet headers (source routing)
— No arbitration logic required in routers, only forward packets
« No contention possible due to global TDM arbitration
— TDM tables hence only required in Nis

» The interconnect is predictable
- The execution time of a flit is constant and three cycles
— The minimum amount of data in a flit is bounded
— The path of a packet (number of hops) is known at design time
— The global TDM table is determined at design time
— This enables the WCRT of the interconnect to be bounded

22 Technische Universiteit
e Eindhoven
University of Technology

Presentation outline

Introduction
CoMPSoC overview
Memory tile

Interconnect

Processing tile

Conclusions

23 Techn hU
TU Edh
tyfTh ology

Predictable Execution

» We have access in bounded time to remote memories via the network
— Next challenge is predictable execution on a shared processor tile

» The ET of a task may depend on other tasks or resources
— Complicates analysis
— Independence from other resources
» Private instructions and data are stored in local memory
— Independence from other tasks
» Tasks not scheduled until tokens are available in CMEMi and there is sufficient
empty space to store output tokens in CMEMo

Timer IMEM DMEM
| Tl

MicroBlaze — — CMEMi 4|
[|
VFCM o —L-CMEMO
—
RDMA ————J

|—I | Technische Universiteit
Eindhoven
University of Technology

Predictable Processor Scheduling

» Scheduling in software is not done in a single cycle
— Time partitioned into task slots and OS slots of bounded length
Tasks execute in task slots, scheduler executes in OS slots

» Non-real-time tasks may have unbounded execution times

Preemption required for predictability
Timer interrupts at the end of a task slot

— Atomizes task executions into tasks slots of bounded length

» Processor is not arbitrarily preemptive
— E.g. reads to remote memories may take hundreds of cycles

All external communication must use remote DMA
Programmed via loads and stores in a single cycle
Polling for completion done in a single cycle
Preemption delay is hence very short

25

Timer IMEM DMEM
| el

MicroBlaze — — CMEMi —|
[|
VFCM —L CMEMo

|
roma =——]
— |

Predictable Processor Resource

» Response times of real-time tasks are bounded
— Execution times of real-time tasks are bounded
— Task slot durations are enforced by preemption

— Tasks are scheduled by predictable arbiter
« E.g. Static scheduling, TDM, or Credit-Controlled Static-Priority
— Overhead of scheduling is bounded by OS slot

26 Technische Universiteit
e Eindhoven
University of Technology

Presentation Outline

Introduction
CoMPSoC overview
Memory tile
Interconnect

Processing tile

Conclusions

27 Th hU
TU /e is
tyfTh ology

Conclusions

» Real-time streaming systems get increasingly complex
— Problem to verify that firm real-time requirements are satisfied
— Simulation-based verification is circular and has poor coverage

» Formal verification is a promising alternative verification approach
— Covers all possible interactions with the system
— Relies on timing models of entire system (applications + platform)
— Requires predictable systems for efficient implementation

» CoMPSoC is a predictable multi-processor platform
— Predictable processor tiles with real-time operating system
— Predictable network-on-chip
— Predictable memory tiles supporting both SRAM and SDRAM
— Supported by an automated design flow

28 Technische Universiteit
e Eindhoven
University of Technology

Conclusions

» We presented three general techniques for predictable systems

1. Independent execution per resource to simplify analysis
— Require all inputs and sufficient space for output before scheduling

2. Predictable arbitration enables bounded response times
— Uses budgets (resource reservations) to regulate resource access
— There are many known predictable arbiters to choose from

3. Preemption protects against large or unbounded requests
— Atomization of requests in memory controller and interconnect
— Preemption in processor tile using interrupts

29 Technische Universiteit
e Eindhoven
University of Technology

k.b.akesson@tue.nl

30 Technische Universiteit
T Eindhoven
University of Technology

