

Trends in MPSoC Design

► Embedded system design gets increasingly complex
– Moore’s law allows increased component integration

– Digital convergence creates a market for highly integrated devices

► Systems are implemented as MPSoC platforms with
– a large number of heterogeneous intellectual property (IP) components– a large number of heterogeneous intellectual property (IP) components

– many concurrently executing applications with real-time requirements

► Pressure to quickly design systems in a cost-effective manner

2

Verification Problem

► Resource sharing
– is required to reduce cost
– introduces interference between sharing applications
– makes timing behavior inter-dependent

► Verification is a design bottle-neck
– Verification is often done by simulation of use-cases executing on platform– Verification is often done by simulation of use-cases executing on platform
– Number of use-cases grows exponentially with the number of applications
– System-level simulation is slow, resulting in poor coverage
– Reverification required if an application is added or changes behavior

► Verification is costly and effort is expected to increase in future!

3

Formal Verification

► Formal verification is an alternative to simulation
– Provides analytical bounds on latency or throughput

– Verification with mathematical proofs instead of slow simulation

– Covers all inputs and combinations of running applications

► Formal verification requires predictable systems► Formal verification requires predictable systems
– Requires timing models of hardware, software, and mapping

– Most industrial systems are not designed with formal analysis in mind
• Efficiency sometimes preferred over predictability

• Platforms rely heavily on unpredictable legacy IP components

4

Problem Statement

► Current trends make it increasingly difficult to verify next-generation
real-time streaming systems with fast time to market

► We require a predictable system (hardware + software)
that enables formal verification of real-time applications

► The contributions of this presentation are:
– An introduction to a predictable MPSoC platform
– Three general techniques for predictable system design
– Example uses of techniques in different resources

• Processor tiles, interconnect, and memory tiles

5

Presentation Outline

IntroductionIntroduction

CoMPSoC overview

Memory tile

6

Processing tile

Interconnect

Memory tile

Conclusions

CoMPSoC Overview

► CoMPSoC is a real-time multi-processor platform
– Supports formal verification using data-flow analysis (predictability)
– Provides complete temporal isolation between applications (composability)

► Components of tiled architecture
– Processing tiles with MicroBlaze cores
– Æthereal network-on-chip– Æthereal network-on-chip
– Memory tiles with SRAM or SDRAM
– Peripheral tiles

► Platform implementations both in
– SystemC for prototyping
– VHDL for FPGA instance

► Platform supported by an automated design flow

7

The CoMPSoC Architecture

► Processing tile
– Instruction memory (IMEM)
– Data memory (DMEM)
– Incoming Communication

Memory (CMEMi)
– Outgoing Communication

Memory (CMEMo)
– Voltage and Frequency Control – Voltage and Frequency Control

Module (VFCM)
– Remote DMA (RDMA)

► Interconnect
– Network Interface (NI)
– Router (R)
– Clock Domain Crossing (CDC)

8

Application Model

► An application consists of a set of tasks
– May be distributed over multiple processing tiles
– Tasks may share a processing tile
– Tasks communicate via distributed shared memory

► Applications have a mixed time-criticality
– Firm real-time applications

Producer Consumer

– Firm real-time applications
• E.g. streaming software-defined radio application
• Failure to satisfy requirement may violate correctness
• Modeled as data-flow graphs with latency and/or throughput requirements

– Non-real-time applications
• Any programming model

– E.g. shared memory, KPN, or dynamic data-flow

• Not assumed to be well-specified
• No real-time requirements, but must be perceived as responsive

9

Predictable Systems

► Execution time (ET)
– The time a request uses a resource before finishing
– Execution of the request on an unshared resource

► Response time (RT)
– Captures effects of resource sharing
– Execution time plus interference from other requestors– Execution time plus interference from other requestors

► Predictable systems are built from predictable components
– Systems with useful worst-case execution time (WCET) and worst-case

response time (WCRT) for every request on every resource

– E.g. for tasks on processors, and transactions in interconnect and memory

10

Enabling Formal Verification

► Benefits of separation of WCET and WCRT
– Considers independent analysis of resource and arbiter

– Analysis covers all combinations of predictable resources and arbiters

► Predictable systems enable formal verification
– Application is a set of requestors for resources with bounded WCRT– Application is a set of requestors for resources with bounded WCRT

– WCRT of requests is used with performance analysis frameworks
• E.g. Data-flow analysis, Real-time calculus, Network calculus

11

Presentation Outline

IntroductionIntroduction

CoMPSoC overviewCoMPSoC overview

Memory tile

12

Processing tile

Interconnect

Memory tile

Conclusions

Predictable SRAM Resource

► Simple SRAMs read/write a random word in a single cycle

► Requests may be large, resulting in long execution times
– Atomizer chops large requests into smaller requests (atoms) of fixed size
– Small responses merged back to expected size

Execution time of memory depends on other resources► Execution time of memory depends on other resources
– Complicates analysis

– Make execution independent by securing input data and output space

• Buffer atoms completely before making them eligible for scheduling
• Decouples memory from production of interconnect and processor

• Ensure sufficient space for responses before scheduling atoms
• Decouples memory from consumption of interconnect and processor

13

Predictable Shared SRAM resource

► We have arrived at a predictable SRAM resource
– (Worst-case) execution time of a scheduled atom is constant
– Next challenge is sharing the resource and bound response times

► Some memory clients issue many requests, starving others
– Arbiter is unpredictable, such as FIFO and static-priority arbitration

– Use a budget-scheduler (predictable through resource reservations)
• E.g. Time-Division Multiplexing, Weighted Round Robin, Fair Queuing, and

Credit-Controlled Static-Priority
• Choose arbiter according to WCRT requirements of memory clients

► A predictable arbiter enables response time to be bounded
– Arbiter bounds the number of interfering atoms
– The WCET of SRAM atoms is known and constant, bounding interference
– WCRT = WCET + bounded interference

14

Problem with SDRAM

► SDRAM memories are more complicated than simple SRAMs

► The ET of an SDRAM request is highly variable and traffic dependent
– Depends on if target row is open, if read or write, if time to refresh etc.
– WCET is pessimistic and guaranteed bandwidth is very low

• Assumes row miss for every SDRAM burst of 8 words
• Less than 16% bandwidth can be guaranteed for all DDR3 devices• Less than 16% bandwidth can be guaranteed for all DDR3 devices

► SDRAM bandwidth is a scarce resource that must be efficiently used
– Additional bandwidth cannot be added due to cost constraints

15

Predictable Unshared SDRAM Resource

►Restrict memory requests to prevent inefficient accesses
– Larger atoms to amortize overhead of read/write switching and row misses
– Atoms are served non-preemptively due to high preemption cost

► Atoms are mapped to statically computed memory patterns
– Sequences of SDRAM commands computed at design time
– There are five types of patterns– There are five types of patterns

• Read, write, r/w switch, w/r switch, and refresh patterns

16

Read pattern for DDR2-400

Memory Patterns

► Atom to pattern mapping:
– Read request → read pattern (potentially first w/r switch)
– Write request → write pattern (potentially first r/w switch)
– Refresh pattern issued periodically every 7.8 µs

► Patterns abstract SDRAM command scheduling to higher level
– Patterns are easier to schedule and analyze, due to less dependencies– Patterns are easier to schedule and analyze, due to less dependencies
– Moves intelligence from the memory controller to design-time tools

17

Predictable Shared SDRAM Resource

► Memory patterns bound execution times and the guaranteed bandwidth
– Mapping determine worst-case atom to pattern mapping

– ET and transferred data of patterns are known at design time

► Predictable arbitration bounds response times
– Bounds the number of interfering atoms– Bounds the number of interfering atoms

– Mapping determine worst-case atom to pattern mapping

– ET of interfering patterns are known at design time

► For any combination of supported predictable memory and arbiter
– SRAM, DDR2, DDR3,

LPDDR, LPDDR2

18

Presentation Outline

IntroductionIntroduction

CoMPSoC overviewCoMPSoC overview

Memory tileMemory tile

19

Processing tile

Interconnect

Memory tileMemory tile

Conclusions

Interconnect Architecture

► Tiles are interconnected using a network on chip

► Network architecture components
– Protocol shell (Shell)

• converts between parallel bus protocol
and steaming data

– Clock domain crossing (CDC)

– Network interface (NI)
• (de)packetizes data
• buffers requests until they can

enter/exit the network

– Router (R)
• Forwards packets

20

Predictable Interconnect

► Distributed resource with several arbitration points
– Predictable arbitration per router
– Packets atomized into flits of three words for fine-grained scheduling

► RT is very high if worst-case interference in every arbiter
– Use global arbitration to synchronize arbiters

– Implemented using contention-free pipelined TDM arbitration
• Global TDM schedule computed at design time
• A flit in the network is scheduled in consecutive TDM slots in all routers

– No buffering required in routers
– All buffers are in network interface, which is cheaper

• Requires sophisticated TDM allocation tool
• Abstracts distributed resource to a single pipelined resource

21

Predictable Interconnect

► A global notion of time is required to synchronize TDM slots
– Problem to implement in MPSoC based on a single clock
– We implement notion of time in a distributed fashion
– Everyone handshakes with neighbors before advancing to next slot
– Suitable for asynchronous and mesochronous implementation

► All NIs and routers need to store a TDM table for every link► All NIs and routers need to store a TDM table for every link
– Path stored by NI in packet headers (source routing)
– No arbitration logic required in routers, only forward packets

• No contention possible due to global TDM arbitration
– TDM tables hence only required in Nis

► The interconnect is predictable
– The execution time of a flit is constant and three cycles
– The minimum amount of data in a flit is bounded
– The path of a packet (number of hops) is known at design time
– The global TDM table is determined at design time
– This enables the WCRT of the interconnect to be bounded

22

Presentation outline

IntroductionIntroduction

CoMPSoC overviewCoMPSoC overview

Memory tileMemory tile

23

Processing tile

InterconnectInterconnect

Memory tileMemory tile

Conclusions

Predictable Execution

► We have access in bounded time to remote memories via the network
– Next challenge is predictable execution on a shared processor tile

► The ET of a task may depend on other tasks or resources
– Complicates analysis
– Independence from other resources

• Private instructions and data are stored in local memory• Private instructions and data are stored in local memory
– Independence from other tasks

• Tasks not scheduled until tokens are available in CMEMi and there is sufficient
empty space to store output tokens in CMEMo

24

Predictable Processor Scheduling

► Scheduling in software is not done in a single cycle
– Time partitioned into task slots and OS slots of bounded length
– Tasks execute in task slots, scheduler executes in OS slots

► Non-real-time tasks may have unbounded execution times
– Preemption required for predictability
– Timer interrupts at the end of a task slot– Timer interrupts at the end of a task slot
– Atomizes task executions into tasks slots of bounded length

► Processor is not arbitrarily preemptive
– E.g. reads to remote memories may take hundreds of cycles
– All external communication must use remote DMA
– Programmed via loads and stores in a single cycle
– Polling for completion done in a single cycle
– Preemption delay is hence very short

25

Predictable Processor Resource

► Response times of real-time tasks are bounded
– Execution times of real-time tasks are bounded
– Task slot durations are enforced by preemption
– Tasks are scheduled by predictable arbiter

• E.g. Static scheduling, TDM, or Credit-Controlled Static-Priority
– Overhead of scheduling is bounded by OS slot

26

Presentation Outline

IntroductionIntroduction

CoMPSoC overviewCoMPSoC overview

Memory tileMemory tile

27

Processing tileProcessing tile

InterconnectInterconnect

Memory tileMemory tile

Conclusions

Conclusions

► Real-time streaming systems get increasingly complex
– Problem to verify that firm real-time requirements are satisfied

– Simulation-based verification is circular and has poor coverage

► Formal verification is a promising alternative verification approach
– Covers all possible interactions with the system– Covers all possible interactions with the system

– Relies on timing models of entire system (applications + platform)

– Requires predictable systems for efficient implementation

► CoMPSoC is a predictable multi-processor platform
– Predictable processor tiles with real-time operating system
– Predictable network-on-chip
– Predictable memory tiles supporting both SRAM and SDRAM
– Supported by an automated design flow

28

Conclusions

► We presented three general techniques for predictable systems

1. Independent execution per resource to simplify analysis
– Require all inputs and sufficient space for output before scheduling

Predictable arbitration enables bounded response times2. Predictable arbitration enables bounded response times
– Uses budgets (resource reservations) to regulate resource access

– There are many known predictable arbiters to choose from

3. Preemption protects against large or unbounded requests
– Atomization of requests in memory controller and interconnect

– Preemption in processor tile using interrupts

29

Questions?

30

k.b.akesson@tue.nlk.b.akesson@tue.nl

