
Precision-Timed (PRET) Machines

Stephen A. Edwards Columbia UniversityStephen A. Edwards Columbia University

Sungjun Kim Columbia University

Edward A. Lee UC Berkeley

Ben Lickly UC Berkeley

Isaac Liu UC Berkeley

Hiren D. Patel University of Waterloo

Jan Reineke <speaker> UC Berkeley

Designing Next-Generation Real-Time Streaming Systems

Tutorial at ESWEEK 2011

Taipei, Taiwan, October 9th, 2011

C

Program
Binary

Hardware

Realization
Compiler

WCET

Analysis
Ptolemy

Model

Code

Generator

Timing
Requirements

Current Timing Verification Process

Reineke et al., Berkeley 2

� �

WCET WCET

Analysis

WCET

Analysis

Architecture
Architecture

Architecture
Hardware

Realization

WCET

Analysis

C

Program
BinaryCompiler

Ptolemy

Model

Code

Generator

Timing
Requirements

Current Timing Verification Process

Reineke et al., Berkeley 3

AnalysisAnalysis
Analysis

� �� New Architecture �
New Analysis &
Recertification

� For modern architectures:

Extremely time-consuming,
costly and error-prone

Boeing:

40 years

supply of

Lack of Suitable Abstractions

for Real-Time Systems

Higher-level Model of Computation

C-level Programming Language

Code

Generation

Reineke et al., Berkeley 4

C-level Programming Language

Instruction Set Architecture (ISA)

Hardware Realizations

Compilation

Execution

Abstracts from

execution time

Increasingly

“unpredictable”

Agenda of this PRET (and this

presentation)

Higher-level Model of Computation

C-level Programming Language

Code

Generation

Reineke et al., Berkeley 5

C-level Programming Language

Instruction Set Architecture (ISA)

Hardware Realizations

Compilation

Execution

Endow with temporal

semantics and control

over timing

Development of the

PTARM, a predictable

hardware realization

Agenda of this PRET (and this

presentation)

Higher-level Model of Computation

C-level Programming Language

Code

Generation

Reineke et al., Berkeley 6

C-level Programming Language

Instruction Set Architecture (ISA)

Hardware Realizations

Compilation

Execution

Endow with temporal

semantics and control

over timing

Development of the

PTARM, a predictable

hardware realization

Adding Control over Timing to the ISA
Capability 1: “delay until”

Some possible capabilities in an ISA:

� [C1] Execute a block of code taking at least a

specified time

Reineke et al., Berkeley 7

Where could this be useful?

- Finishing early is not always better:

- Scheduling Anomalies (Graham’s anomalies)

- Communication protocols may expect periodic behavior

- …

Adding Control over Timing to the ISA
Capabilities 2+3: “late” and “immediate miss detection”

� [C2] Conditionally branch if the specified time was

exceeded.

Reineke et al., Berkeley 8

� [C3] If the specified time is exceeded during

execution of the block, branch immediately to an

exception handler.

time1 second

Code block

exception_on_expire

Applications of Variants 2+3
“late” and “immediate miss detection”

� [C3] “immediate miss detection”:

� Runtime detection of missed deadlines to initiate

error handling mechanisms

� Anytime algorithms

� However: unknown state after exception is taken

Reineke et al., Berkeley 9

� However: unknown state after exception is taken

� [C2] “late miss detection”:

� No problems with unknown state of system

� Change parameters of algorithm to meet future

deadlines

PRET Assembly Instructions

Supporting these Four Capabilities

set_time %r, <val>

– loads current time + <val> into %r

delay_until %r

– stall until current time >= %r

Reineke et al., Berkeley 10

branch_expired %r, <target>
– branch to target if current time > %r

exception_on_expire %r, <id>
– arm processor to throw exception <id> when current time > %r

deactivate_exception <id>
– disarm the processor for exception <id>

Controlled Timing in
Assembly Code

[C1] Delay until:

set_time r1, 1s

// Code block

delay_until r1

[C2] Late miss detection

set_time r1, 1s

// Code block

Reineke et al., Berkeley 11

delay_until r1 branch_expired r1, <target>

delay_until r1

set_time r1, 1s

exception_on_expire r1, 1

// Code block

deactivate_exception 1

delay_until r1

[C3] Immediate miss detection

MTFD – Meet the F(inal) Deadline

� Capability [C1] ensures that a block of

code takes at least a given time.

� [C4] “MTFD”: Execute a block of code

taking at most the specified time.

Reineke et al., Berkeley 12

taking at most the specified time.

[C4] Exact execution:

set_time r1, 1s

// Code block

MTFD r1

delay_until r1

Being arbitrarily “slow” is

always possible and “easy”.

But what about being “fast”?

Current Timing Verification Process

WCET

Architecture
Architecture

Architecture
Hardware

Realization

WCET

C

Program
BinaryCompiler

Ptolemy Code Timing

Reineke et al., Berkeley 13

� New Architecture �
Recertification

� Extremely time-consuming
and costly

WCET

Analysis

WCET

Analysis

WCET

Analysis

WCET

Analysis

� �

Ptolemy

Model

Code

Generator

Timing
Requirements

The Future Timing Verification Process

Architecture
ArchitectureArchitecture

C Program

w/ Deadline

Instructions

Binary
Hardware

Realization
Compiler

Timing

Analysis

Ptolemy Code

Reineke et al., Berkeley 14

� Timing is property of ISA

� Compiler can check constraints once and for all

� Downside: little flexibility in development of hardware
realizations

� �

Ptolemy

Model

Code

Generator

The Future Timing Verification Process:

Flexibility through Parameterization

ArchitectureArchitecture
Architecture

C Program

w/ Deadline

Instructions

Binary
Hardware

Realization
Compiler

Const

raints

Parametric

Timing

Analysis

Reineke et al., Berkeley 15

� ISA leaves more freedom to implementations through
a parameterized timing model

� Compiler generates constraints on parameters which
are sufficient to meet the timing constraints

� Parametric timing analysis is ongoing work

� �Ptolemy

Model

Code

Generator

The Future Timing Verification Process:

Flexibility through Parameterization

ArchitectureArchitecture
Architecture

C Program

w/ Deadline

Instructions

Binary
Hardware

Realization
Compiler

Const

raints

Parametric

Timing

Analysis

Reineke et al., Berkeley 16

Possible parameters:

� Latencies of different components, such as the
pipeline, scratchpad memory, main memory, buses

� Sizes of buffers, such as scratchpad memories or
caches.

� �Ptolemy

Model

Code

Generator

The Future Timing Verification Process:

Flexibility through Parameterization

ArchitectureArchitecture
Architecture

C Program

w/ Deadline

Instructions

Binary
Hardware

Realization
Compiler

Const

raints

Parametric

Timing

Analysis

Reineke et al., Berkeley 17

Challenge: Parameterization should allow for:

� Efficient and accurate parametric timing analysis, and

� Admit a wide variety of cost-efficient hardware
realizations.

� �Ptolemy

Model

Code

Generator

Agenda of this PRET (and this

presentation)

Higher-level Model of Computation

C-level Programming Language

Code

Generation

Reineke et al., Berkeley 18

C-level Programming Language

Instruction Set Architecture (ISA)

Hardware Realizations

Compilation

Execution

Endow with temporal

semantics and control

over timing

Development of the

PTARM, a predictable

hardware realization

Hardware Realizations:

Challenges to deliver predictable timing

� Pipelining

� Memory hierarchy: Caches, DRAM

� On-chip communication

I/O (DMA, interrupts)

Reineke et al., Berkeley 19

� I/O (DMA, interrupts)

� Resource sharing (e.g. in multicore architectures)

First Problem: Pipelining

Reineke et al., Berkeley 20

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

First Problem: Pipelining

Reineke et al., Berkeley 21

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

Pipelining: Hazards

Reineke et al., Berkeley 22

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

Forwarding helps, but not all the time…

LD R1, 45(r 2)

DADD R5, R1, R7

BE R5, R3, R0

ST R5, 48(R2)

Unpipelined F D E M W F D E M W F D E M W F D E M W

Reineke et al., Berkeley 23

Unpipelined F D E M W F D E M W F D E M W F D E M W

F D E M W

The Dream F D E M W

F D E M W

F D E M W

F D E M W

The Reality F D E M W Memory Hazard

F D E M W Data Hazard

F D E M W Branch Hazard

Our Solution: Thread-interleaved Pipelines

T1: F D E M W F D E M W

T2: F D E M W F D E M W

T3: F D E M W F D E M W

T4: F D E M W F D E M W

T5: F D E M W F D E M W

+

Reineke et al., Berkeley 24

Each thread occupies only one stage of the pipeline at a time
� No hazards; perfect utilization of pipeline

� Simple hardware implementation (no forwarding, etc.)

Drawback: reduced single-thread performance

Second Problem: Memory Hierarchy

Reineke et al., Berkeley 25

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

• Register file is a temporary memory under program

control.

• Cache is a temporary memory under hardware control.

PRET principle: any temporary memory is under program

control.

PRET principles implies Scratchpad in

place of cache

Hardware

threadHardware

threadHardware

threadHardware

thread
scratc

h memory I/O devices

Reineke et al., Berkeley 26

thread
thread

registers

h

pad

memory I/O devices

Interleaved

pipeline with one

set of registers

per thread

SRAM

scratchpad

shared among

threads

DRAM main

memory

What about the main memory?

Dynamic RAM Organization Overview

DIMMaddr+cmd

 data

x16

Device

x16

DeviceControl
DRAM Device

BankWord line

DRAM Device
Set of DRAM banks +

• Control logic
• I/O gating

Accesses to banks can be pipelined,
however I/O + control logic are shared

DRAM Cell
leaks charge � needs to be
refreshed (every 7.8µs for
DDR2/DDR3)
therefore “dynamic”

Reineke et al., Berkeley 27

chip select 0

16

 data

chip select 1

x16

Device

16

 data

16

 data

16

 data Device

x16
Device

x16

Device

x16

Device

x16

Device

x16
Device

Device

64

data

Rank 0 Rank 1

address

I/
O

 R
e

g
is

te
rs

+

 D
a

ta
 I

/OAddress
Register

Control

Logic

Mode
Register

16

data

command

chip select BankBankBankBank
Row

Address
Mux

Refresh
Counter

I/O
Gating

DRAM
Array

R
o
w

 D
e

c
o
d

e
r

Sense Amplifiers

and Row Buffer

Column Decoder/
Multiplexer

R
o

w

A
d
d

re
s
s

Bank

CapacitorBit line

Word line

Transistor

Capacitor

DRAM Bank
= Array of DRAM Cells
+ Sense Amplifiers and

Row Buffer
Sharing of sense
amplifiers and row buffer

DRAM Module
Collection of DRAM Devices

• rank = groups of devices
that operate in unison

• Ranks share
data/address/command
bus

DRAM Timing Constraints

� DRAM Memory Controllers have to conform to
different timing constraints

� Almost all of these constraints are due to
competition for resources at different levels:

Reineke et al., Berkeley 28

� Within the DRAM banks:

rows are sharing sense amplifiers

� Within a DRAM device:

sharing of I/O gating and control logic

� Between different ranks:

sharing of data/address/command busses

PRET DRAM Controller: Exploiting

Internal Structure of DRAM Module

� Consists of 4-8 banks in 1-2 ranks

• Share only command and data bus, otherwise independent

� Partition into four groups of banks in alternating ranks

� Cycle through groups in a time-triggered fashion

Reineke et al., Berkeley 29

Ban

k 0

Ban

k 1

Ban

k 2

Ban

k 3

Rank 0:

Ban

k 0

Ban

k 1

Ban

k 2

Ban

k 3

Rank 1:

• Successive accesses to

same group obey timing

constraints

• Reads/writes to different

groups do not interfere

Provides four
independent and
predictable resources

General-Purpose DRAM Controller

vs PRET DRAM Controller

General-Purpose Controller

� Abstracts DRAM as a

single shared resource

� Schedules refreshes

dynamically

PRET DRAM Controller

� Abstracts DRAM as multiple

independent resources

� Refreshes as reads:

shorter interruptions

Reineke et al., Berkeley 30

dynamically

� Schedules commands

dynamically

� “Open page” policy

speculates on locality

shorter interruptions

� Defer refreshes:

improves perceived latency

� Follows periodic, time-

triggered schedule

� “Closed page” policy:

access-history independence

Conventional DRAM Controller

vs PRET DRAM Controller:

Latency Evaluation

Varying Interference: Varying Transfer Size:

Reineke et al., Berkeley 31

PRET DRAM Controller vs Predator

Predator:
• abstracts DRAM as

single resource
• uses standard refresh

mechanism

Reineke et al., Berkeley 32

� PRET’s worst-case
access latency of small
transfers is smaller
than Predator’s

� PRET’s drawback:
memory is private

PTARM Memory Hierarchy

Hardware

threadHardware

threadHardware

threadHardware scratc
memory

memory
memory

Reineke et al., Berkeley 33

threadHardware

thread

registers

scratc

h

pad

I/O devices

Interleaved

pipeline with one

set of registers

per thread

SRAM

scratchpad

shared among

threads

DRAM main

memory,

separate banks

per thread

memory
memory

memory

Note inverted memory

hierarchy!

Conclusions

� Real-time computing needs real-time abstractions

� Potential for significant improvements in worst-case

performance of some hardware realizations

� For more information on PRET:

Raffaello Sanzio da Urbino – The Athens School

http://chess.eecs.berkeley.edu/pret/

Lee, Berkeley 34

Raffaello Sanzio da Urbino – The Athens School

References

� [CODES ’11] Jan Reineke, Isaac Liu, Hiren D. Patel, Sungjun Kim, Edward A. Lee, PRET

DRAM Controller: Bank Privatization for Predictability and Temporal Isolation, International

Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),

October, 2011.

� [DAC ’11] Dai Nguyen Bui, Edward A. Lee, Isaac Liu, Hiren D. Patel, Jan Reineke, Temporal

Isolation on Multiprocessing Architectures, Design Automation Conference (DAC), June,

2011.

� [Asilomar ’10] Isaac Liu, Jan Reineke, and Edward A. Lee, PRET Architecture Supporting

Concurrent Programs with Composable Timing Properties, in Signals, Systems, and

Reineke et al., Berkeley 35

Concurrent Programs with Composable Timing Properties, in Signals, Systems, and

Computers (ASILOMAR), Conference Record of the Forty Fourth Asilomar Conference,

November 2010, Pacific Grove, California.

� [ICCD ’09] Stephen A. Edwards, Sungjun Kim, Edward A. Lee, Isaac Liu, Hiren D. Patel,

Martin Schoeberl. A Disruptive Computer Design Idea: Architectures with Repeatable Timing,

Proceedings of International Conference on Computer Design (ICCD), IEEE, Lake Tahoe,

CA, 4-7 October, 2009.

� [CASES ’08] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards and

Edward A. Lee, "Predictable Programming on a Precision Timed Architecture," in

Proceedings of International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems (CASES), Piscataway, NJ, pp. 137-146, IEEE Press, October, 2008.

� [UCB-TR ’08] Hiren D. Patel, Ben Lickly, Bas Burgers and Edward A. Lee, "A Timing

Requirements-Aware Scratchpad Memory Allocation Scheme for a Precision Timed

Architecture," EECS Department, University of California, Berkeley, Technical Report No.

UCB/EECS-2008-115, September 12, 2008.

